Keywords: geometric structures on manifolds; local submanifolds; contact theory; actions of groups
@article{ARM_1996_32_1_a4,
author = {Villarroel, Y.},
title = {Higher order contact of real curves in a real hyperquadric},
journal = {Archivum mathematicum},
pages = {57--73},
year = {1996},
volume = {32},
number = {1},
mrnumber = {1399840},
zbl = {0870.53025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_1_a4/}
}
Villarroel, Y. Higher order contact of real curves in a real hyperquadric. Archivum mathematicum, Tome 32 (1996) no. 1, pp. 57-73. http://geodesic.mathdoc.fr/item/ARM_1996_32_1_a4/
[1] Bredon G.E.: Introduction to Compact Transformations groups. Academic Press, New York (1972). | MR
[2] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. II. Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238.
[3] Cartan E.: Théorie des groupes finis el la géométrie différentielle traitées par la Methode du repère mobile. Gauthier-Villars, Paris, (1937).
[4] Chern S. S., Moser J. K.: Real hypersurfaces in complex manifolds. Acta mathematica 133, (1975), 219-271. | MR | Zbl
[5] Chern S. S., Cowen J. M.: Frenet frames along holomorphic curves. Topics in Differential Geometry, 1972-1973, pp. 191-203. Dekker, New York, 1974. | MR
[6] Ehresmann C.: Les prolongements d’un space fibré diferéntiable. C.R. Acad. Sci. Paris, 240 (1955), 1755-1757. | MR
[7] Green M. L.: The moving frame, Differential invariants and rigity theorems for curves in homogeneous spaces. Duke Math. Journal, Vol 45, No.4(1978), 735-779. | MR
[8] Griffiths P.: On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry. Duke Math. J. 41(1974), 775-814. | MR
[9] Hermann R.: Equivalence invariants for submanifolds of Homogeneous Spaces. Math. Annalen 158, 284-289 (1965). | MR | Zbl
[10] Hermann R.: Existence in the large of parallelism homomorphisms. Trans. Am. Math. Soc. 108, 170-183 (1963). | MR
[11] Jensen G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces. Lectures notes in Math. Vol. 610, Springer-Verlag, New York (1977). | MR | Zbl
[12] Jensen G.R.: Deformation of submanifolds of homogeneous spaces. J. of Diff. Geometry, 16(1981), 213-246. | MR | Zbl
[13] Kolář I.: Canonical forms on the prolongations of principle fibre bundles. Rev. Roum. Math. Pures et Appl., Bucarest, Tome XVI, No.7, (1971), 1091-1106. | MR
[14] Rodrigues A. M.: Contact and equivalence of submanifolds of homogeneous spaces. Aspects of Math. and its Applications. Elsevier Science Publishers B.V. (1986). | MR | Zbl
[15] Villarroel Y.: Equivalencia de curvas. Acta Científica Venezolana. Vol. 37, No. 6, p. 625-631, (1987). | MR
[16] Villarroel Y.: Teoria de contacto y Referencial móvil. Public. Universidad Central de Venezuela. Dpto. de Matemática. 1991.