The oscillation of an $m$th order perturbed nonlinear difference equation
Archivum mathematicum, Tome 32 (1996) no. 1, pp. 13-27 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We offer sufficient conditions for the oscillation of all solutions of the perturbed difference equation $$|\Delta^{m} y(k)|^{\alpha-1}\Delta^{m} y(k)+Q(k,y(k-\sigma_{k}), \Delta y(k-\sigma_{k}),\cdots, \Delta^{m-2}y(k-\sigma_{k}))$$ \hfill $=P(k,y(k-\sigma_{k}),\Delta y(k-\sigma_{k}),\cdots, \Delta^{m-1}y(k-\sigma_{k})),~k\geq k_{0}$ where $\alpha>0.$ Examples which dwell upon the importance of our results are also included.
We offer sufficient conditions for the oscillation of all solutions of the perturbed difference equation $$|\Delta^{m} y(k)|^{\alpha-1}\Delta^{m} y(k)+Q(k,y(k-\sigma_{k}), \Delta y(k-\sigma_{k}),\cdots, \Delta^{m-2}y(k-\sigma_{k}))$$ \hfill $=P(k,y(k-\sigma_{k}),\Delta y(k-\sigma_{k}),\cdots, \Delta^{m-1}y(k-\sigma_{k})),~k\geq k_{0}$ where $\alpha>0.$ Examples which dwell upon the importance of our results are also included.
Classification : 39A10
Keywords: oscillatory solutions; difference equations
@article{ARM_1996_32_1_a2,
     author = {Wong, P. J. Y. and Agarwal, Ravi P.},
     title = {The oscillation of an $m$th order perturbed nonlinear difference equation},
     journal = {Archivum mathematicum},
     pages = {13--27},
     year = {1996},
     volume = {32},
     number = {1},
     mrnumber = {1399838},
     zbl = {0870.39001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_1_a2/}
}
TY  - JOUR
AU  - Wong, P. J. Y.
AU  - Agarwal, Ravi P.
TI  - The oscillation of an $m$th order perturbed nonlinear difference equation
JO  - Archivum mathematicum
PY  - 1996
SP  - 13
EP  - 27
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1996_32_1_a2/
LA  - en
ID  - ARM_1996_32_1_a2
ER  - 
%0 Journal Article
%A Wong, P. J. Y.
%A Agarwal, Ravi P.
%T The oscillation of an $m$th order perturbed nonlinear difference equation
%J Archivum mathematicum
%D 1996
%P 13-27
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1996_32_1_a2/
%G en
%F ARM_1996_32_1_a2
Wong, P. J. Y.; Agarwal, Ravi P. The oscillation of an $m$th order perturbed nonlinear difference equation. Archivum mathematicum, Tome 32 (1996) no. 1, pp. 13-27. http://geodesic.mathdoc.fr/item/ARM_1996_32_1_a2/

[1] Agarwal R. P.: Difference Equations and Inequalities. Marcel Dekker, New York, 1992. | MR | Zbl

[2] Agarwal R. P.: Properties of solutions of higher order nonlinear difference equations I. An. St. Univ. Iasi 29(1983), 85-96. | MR

[3] Agarwal R. P.: Difference calculus with applications to difference equations. in General Inequalities, ed. W. Walter, ISNM 71, Birkhaver Verlag, Basel (1984), 95-160. | MR | Zbl

[4] Agarwal R. P.: Properties of solutions of higher order nonlinear difference equations II. An. St. Univ. Iasi 29(1985), 165-172. | MR

[5] Grace S. R., Lalli B. S.: Oscillation theorems for $n$th order delay equations. J. Math. Anal. Appl. 91(1983), 342-366. | MR

[6] Grace S. R., Lalli B. S.: Oscillation theorems for damped differential equations of even order with deviating arguments. SIAM J. Math. Anal. 15(1984), 308-316. | MR | Zbl

[7] Hooker. J. W., Patula W. T.: A second order nonlinear difference equation: oscillation and asymptotic behavior. J. Math. Anal. Appl. 91(1983), 9-29. | MR | Zbl

[8] Lakshmikantham V., Trigiante D.: Difference Equations with Applications to Numerical Analysis. Academic Press, New York, 1988. | MR

[9] Popenda J. : Oscillation and nonoscillation theorems for second order difference equations. J. Math. Anal. Appl. 123(1987), 34-38. | MR | Zbl

[10] Staikos V. A.: Basic results on oscillation for differential equations. Hiroshima Math. J. 10(1980), 495-516. | MR | Zbl

[11] Thandapani E.: Oscillatory behavior of solutions of second order nonlinear difference equations. J. Math. Phys. Sci. 25(1991), 451-464.

[12] Thandapani E., Sundaram P.: Oscillation theorems for some even order nonlinear difference equations. preprint.

[13] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations. Math. Comp. Modelling 21(1995), 63-84. | MR | Zbl

[14] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations. Dynamic Systems and Applications, to appear. | MR | Zbl

[15] Wong P. J. Y., Agarwal R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Applic., 198 (1996), 337-354. | MR

[16] Wong P. J. Y., Agarwal R. P.: Oscillation theorems for certain second order nonlinear difference equations. to appear. | MR | Zbl

[17] Wong P. J. Y., Agarwal R. P.: Oscillation and monotone solutions of a second order quasilinear difference equation. to appear.

[18] Wong P. J. Y., Agarwal R. P.: On the oscillation and asymptotically monotone solutions of second order quasilinear differential equations. Appl. Math. Comp., to appear. | MR

[19] Wong P. J. Y., Agarwal R. P.: Oscillations and nonoscillations of half-linear difference equations generated by deviating arguments, Advances in Difference Equations II. Computers Math. Applic., to appear. | MR

[20] Wong Z., Yu J.: Oscillation criteria for second order nonlinear difference equations. Funk. Ekv. 34(1991), 313-319.