Keywords: contact metric manifolds; Tanaka connection; Jacobi operator
@article{ARM_1995_31_4_a9,
author = {Cho, Jong Taek},
title = {A contact metric manifold satisfying a certain curvature condition},
journal = {Archivum mathematicum},
pages = {319--333},
year = {1995},
volume = {31},
number = {4},
mrnumber = {1390592},
zbl = {0849.53030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a9/}
}
Cho, Jong Taek. A contact metric manifold satisfying a certain curvature condition. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 319-333. http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a9/
[1] Berndt, J. and Vanhecke, L.: Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80. | MR
[2] Blair, D. E.: Contact manifolds in Riemannian geometry. Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . | MR | Zbl
[3] Blair, D. E., Koufogiorgos, T., and Sharma, R.: A classification of 3-dimensional contact metric manifolds with $Q\phi =\phi Q$. Kodai Math.J. 13 (1990), 391-401. | MR
[4] Blair, D. E. and Sharma, R.: Three-dimensional locally symmetric contact metric manifolds. to appear in Boll.Un.Mat.Ital.. | MR
[5] Blair, D. E. and Vanhecke, L.: Symmetries and $\phi $-symmetric spaces. Tôhoku Math.J. 39 (1987), 373-383. | MR
[6] Cartan, E.: Lecons sur la géométrie des espaces de Riemann, 2nd éd. Gauthier-Villars, Paris (1946). | MR
[7] Cho, J. T.: On some classes of almost contact metric manifolds. Tsukuba J. Math. 19 (1995), 201-217. | MR | Zbl
[8] Cho, J. T.: On some classes of contact metric manifolds. Rend.Circ.Mat. Palermo XLIII (1994), 141–160. | MR | Zbl
[9] Cho, J. T.: Generalizations of locally symmetric spaces and locally $\phi $-symmetric spaces. Niigata Univ. Doctorial Thesis (1994), .
[10] Olszak, Z.: On contact metric manifolds. Tôhoku Math. J. 31 (1979), . | MR | Zbl
[11] Takahashi, T.: Sasakian $\phi $-symmetric spaces. Tôhoku Math. J. 29 (1977), 91-113. | MR
[12] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J. Math. 2 (1976), 131-190. | MR | Zbl
[13] Tanno, S.: Ricci curvature of contact Riemannian manifolds. Tôhoku Math. J. 40 (1988), 441-448. | MR
[14] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), 349-379. | MR | Zbl
[15] Tricerri, F. and Vanhecke, L.: Homogeneous structures on Riemannian manifolds. London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), . | MR