A contact metric manifold satisfying a certain curvature condition
Archivum mathematicum, Tome 31 (1995) no. 4, pp. 319-333 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $.
In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $.
Classification : 53C15, 53C25, 53C35
Keywords: contact metric manifolds; Tanaka connection; Jacobi operator
@article{ARM_1995_31_4_a9,
     author = {Cho, Jong Taek},
     title = {A contact metric manifold satisfying a certain curvature condition},
     journal = {Archivum mathematicum},
     pages = {319--333},
     year = {1995},
     volume = {31},
     number = {4},
     mrnumber = {1390592},
     zbl = {0849.53030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a9/}
}
TY  - JOUR
AU  - Cho, Jong Taek
TI  - A contact metric manifold satisfying a certain curvature condition
JO  - Archivum mathematicum
PY  - 1995
SP  - 319
EP  - 333
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a9/
LA  - en
ID  - ARM_1995_31_4_a9
ER  - 
%0 Journal Article
%A Cho, Jong Taek
%T A contact metric manifold satisfying a certain curvature condition
%J Archivum mathematicum
%D 1995
%P 319-333
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a9/
%G en
%F ARM_1995_31_4_a9
Cho, Jong Taek. A contact metric manifold satisfying a certain curvature condition. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 319-333. http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a9/

[1] Berndt, J. and Vanhecke, L.: Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80. | MR

[2] Blair, D. E.: Contact manifolds in Riemannian geometry. Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . | MR | Zbl

[3] Blair, D. E., Koufogiorgos, T., and Sharma, R.: A classification of 3-dimensional contact metric manifolds with $Q\phi =\phi Q$. Kodai Math.J. 13 (1990), 391-401. | MR

[4] Blair, D. E. and Sharma, R.: Three-dimensional locally symmetric contact metric manifolds. to appear in Boll.Un.Mat.Ital.. | MR

[5] Blair, D. E. and Vanhecke, L.: Symmetries and $\phi $-symmetric spaces. Tôhoku Math.J. 39 (1987), 373-383. | MR

[6] Cartan, E.: Lecons sur la géométrie des espaces de Riemann, 2nd éd. Gauthier-Villars, Paris (1946). | MR

[7] Cho, J. T.: On some classes of almost contact metric manifolds. Tsukuba J. Math. 19 (1995), 201-217. | MR | Zbl

[8] Cho, J. T.: On some classes of contact metric manifolds. Rend.Circ.Mat. Palermo XLIII (1994), 141–160. | MR | Zbl

[9] Cho, J. T.: Generalizations of locally symmetric spaces and locally $\phi $-symmetric spaces. Niigata Univ. Doctorial Thesis (1994), .

[10] Olszak, Z.: On contact metric manifolds. Tôhoku Math. J. 31 (1979), . | MR | Zbl

[11] Takahashi, T.: Sasakian $\phi $-symmetric spaces. Tôhoku Math. J. 29 (1977), 91-113. | MR

[12] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J. Math. 2 (1976), 131-190. | MR | Zbl

[13] Tanno, S.: Ricci curvature of contact Riemannian manifolds. Tôhoku Math. J. 40 (1988), 441-448. | MR

[14] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), 349-379. | MR | Zbl

[15] Tricerri, F. and Vanhecke, L.: Homogeneous structures on Riemannian manifolds. London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), . | MR