Keywords: root systems; Weyl Groups; connectivity in a graph
@article{ARM_1995_31_4_a6,
author = {Youssef, Samy A. and Hulsurkar, S. G.},
title = {On connectedness of graphs on direct product of {Weyl} groups},
journal = {Archivum mathematicum},
pages = {299--304},
year = {1995},
volume = {31},
number = {4},
mrnumber = {1390589},
zbl = {0849.20033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a6/}
}
Youssef, Samy A.; Hulsurkar, S. G. On connectedness of graphs on direct product of Weyl groups. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 299-304. http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a6/
[1] Hulsurkar S.G.: Nonplanarity of graphs on Weyl groups. J. Math. Phys. Sci., 24(1990) 363. | MR
[2] Hupmhreys J.E.: Introduction to Lie Algebras and Representation theory. Springer-Verlag, New York, 1972. | MR
[3] Verma D.-N.: Role of Affine Weyl Groups in the Representation Theory of Algebraic Chevalley Groups and their Lie Algebras. in “Lie Groups and their Representations", Ed. I.M.Gelfand, Halstead, New York, 1975. | MR | Zbl
[4] Hulsurkar S.G.: Proof of Verma’s conjecture on Weyl’s dimension polynomial. Inventiones Math., 27(1974), 45. | MR | Zbl
[5] Narsingh Deo: Graph Theory. Prentice Hall of India, New Delhi, 1990.
[6] Youssef, Samy A., Hulsurkar S.G.: On Connectedness of graphs on Weyl Groups of type $ A_n (n \ge 4) $. Arch. Math. (Brno) 31(1995), 163-170. | MR