Conditions for the absence of positive solutions of a first order differential inequality with a single delay
Archivum mathematicum, Tome 31 (1995) no. 4, pp. 291-297
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A sufficient integral condition for the absence of eventually positive solutions of a first order stable type differential inequality with one nondecreasing retarded argument is given. In the special case of equality the result becomes an oscillation criterion.
A sufficient integral condition for the absence of eventually positive solutions of a first order stable type differential inequality with one nondecreasing retarded argument is given. In the special case of equality the result becomes an oscillation criterion.
Classification : 34A40, 34C10, 34K05, 34K11
Keywords: delay; differential inequality; oscillation
@article{ARM_1995_31_4_a5,
     author = {Kozakiewicz, Erwin},
     title = {Conditions for the absence of positive solutions of a first order differential inequality with a single delay},
     journal = {Archivum mathematicum},
     pages = {291--297},
     year = {1995},
     volume = {31},
     number = {4},
     mrnumber = {1390588},
     zbl = {0849.34054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a5/}
}
TY  - JOUR
AU  - Kozakiewicz, Erwin
TI  - Conditions for the absence of positive solutions of a first order differential inequality with a single delay
JO  - Archivum mathematicum
PY  - 1995
SP  - 291
EP  - 297
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a5/
LA  - en
ID  - ARM_1995_31_4_a5
ER  - 
%0 Journal Article
%A Kozakiewicz, Erwin
%T Conditions for the absence of positive solutions of a first order differential inequality with a single delay
%J Archivum mathematicum
%D 1995
%P 291-297
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a5/
%G en
%F ARM_1995_31_4_a5
Kozakiewicz, Erwin. Conditions for the absence of positive solutions of a first order differential inequality with a single delay. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 291-297. http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a5/

[1] Ladde G.S., Lakshmikantham V., Zhang B.G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987. | MR | Zbl

[2] Kozakiewicz E.: Oscillations for First Order Neutral Differential Equations. ZAMM 73 (1993), T813-T815. | MR | Zbl

[3] Kozakiewicz E.: Conditions for the absence of positive solutions of first order differential inequalities with deviating arguments. 4th. Int. Coll. on Differential Equations, pp. 157-161, D. Bainov and V. Covachev (eds.), VSP 1994. | MR | Zbl

[4] Elbert Á., Stavroulakis I.P.: Oscillation and Non-oscillation Criteria for Delay Differential Equations. Proc. Amer. Math. Soc., 123 (1995), 1503-1510, or University of Ioannina, Greece, Technical Report No. 228, July 1993. | MR