@article{ARM_1995_31_4_a4,
author = {B\'alint, Vojtech and Lauron, Philippe},
title = {Improvement of inequalities for the $(r,q)$-structures and some geometrical connections},
journal = {Archivum mathematicum},
pages = {283--289},
year = {1995},
volume = {31},
number = {4},
mrnumber = {1390587},
zbl = {0846.05012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a4/}
}
TY - JOUR AU - Bálint, Vojtech AU - Lauron, Philippe TI - Improvement of inequalities for the $(r,q)$-structures and some geometrical connections JO - Archivum mathematicum PY - 1995 SP - 283 EP - 289 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a4/ LA - en ID - ARM_1995_31_4_a4 ER -
Bálint, Vojtech; Lauron, Philippe. Improvement of inequalities for the $(r,q)$-structures and some geometrical connections. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 283-289. http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a4/
[1] Bálint, V.: On a certain class of incidence structures. Práce a štúdie Vysokej Školy Dopravnej v Žiline 2 (1979), 97-106 (In Slovak; summary in English, German and Russian). | MR
[2] Bálint, V., Bálintová, A.: On the number of circles determined by $n$ points in Euclidean plane. Acta Mathematica Hungarica 63 (3-4) (1994), 283-289. | MR
[3] Bálint, V., Lauron, Ph.: Some inequalities for the $(r,q)$-structures. STUDIES OF UNIVERSITY OF TRANSPORT AND COMMUNICATIONS IN ŽILINA, Mathematical - Physical Series, Volume 10 (1995), 3-10. | MR
[4] Beck, J.: On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorical geometry. Combinatorica 3 (3-4) (1983), 281-297. | MR
[5] Borwein, P., Moser, W. O. J.: A survey of Sylvester’s problem and its generalizations. Aequa. Math. 40 (1990), 111-135. | MR
[6] de Bruijn, N. G., Erdős, P.: On a combinatorical problem. Nederl. Acad. Wetensch. 51 (1948), 1277-1279. | MR
[7] Csima, J., Sawyer, E. T.: A short proof that there exist $6n/13$ ordinary points. Discrete and Computational Geometry 9 (1993), no. 2, 187-202. | MR
[8] Elekes, G.: $n$ points in the plane can determine $n^{3\over 2}$ unit circles. Combinatorica 4 (1984), 131. | MR | Zbl
[9] Elliott, P. D. T. A.: On the number of circles determined by $n$ points. Acta Math. Acad. Sci. Hung. 18 (3-4) (1967), 181-188. | MR | Zbl
[10] Erdős, P.: Néhány geometriai problémáról. Mat. Lapok 8 (1957), 86-92. | MR
[11] Erdős, P.: On some metric and combinatorical geometric problems. Discrete Math. 60 (1986), 147-153. | MR
[12] Hansen, S.: Contributions to the Sylvester-Gallai-Theory. Doctoral dissertation, University of Copenhagen, 1981.
[13] Harborth, H., Mengersen, I.: Point sets with many unit circles. Discrete Math. 60 (1985), 193-197. | MR
[14] Harborth, H.: Einheitskreise in ebenen Punktmengen. 3.Kolloquium über Diskrete Geometrie, Institut für Mathematik der Universität Salzburg (1985), 163-168. | Zbl
[15] Jucovič, E.: Problem $24$. Combinatorical Structures and their Applications, New York-London-Paris, Gordon and Breach, 1970.
[16] Kelly, L. M., Moser, W. O. J.: On the number of ordinary lines determined by $n$ points. Canad. J. Math. 10 (1958), 210-219. | MR
[17] Klee, V., Wagon, S.: Old and New Unsolved Problems in Plane Geometry and Number Theory. Mathematical Assoc. Amer., Washington, DC, 1991. | MR
[18] Sylvester, J. J.: Mathematical Question $11851$. Educational Times 59 (1893), 98.