Classification of nonoscillatory solutions of higher order neutral type difference equations
Archivum mathematicum, Tome 31 (1995) no. 4, pp. 263-277 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The authors consider the difference equation \[ \Delta ^{m} [y_{n} - p_{n} y_{n - k}] + \delta q_{n} y_{\sigma (n + m - 1)} = 0 \qquad \mathrm {(\ast )}\] where $m \ge 2$, $\delta = \pm 1$, $k \in N_0 = \lbrace 0,1, 2, \dots \rbrace $, $\Delta y_{n} = y_{n + 1} - y_{n}$, $q_{n} > 0$, and $\lbrace \sigma (n)\rbrace $ is a sequence of integers with $\sigma (n) \le n$ and $\lim _{n \rightarrow \infty } \sigma (n) = \infty $. They obtain results on the classification of the set of nonoscillatory solutions of ($\ast $) and use a fixed point method to show the existence of solutions having certain types of asymptotic behavior. Examples illustrating the results are included.
The authors consider the difference equation \[ \Delta ^{m} [y_{n} - p_{n} y_{n - k}] + \delta q_{n} y_{\sigma (n + m - 1)} = 0 \qquad \mathrm {(\ast )}\] where $m \ge 2$, $\delta = \pm 1$, $k \in N_0 = \lbrace 0,1, 2, \dots \rbrace $, $\Delta y_{n} = y_{n + 1} - y_{n}$, $q_{n} > 0$, and $\lbrace \sigma (n)\rbrace $ is a sequence of integers with $\sigma (n) \le n$ and $\lim _{n \rightarrow \infty } \sigma (n) = \infty $. They obtain results on the classification of the set of nonoscillatory solutions of ($\ast $) and use a fixed point method to show the existence of solutions having certain types of asymptotic behavior. Examples illustrating the results are included.
Classification : 39A10, 39A12
Keywords: difference equations; nonlinear; asymptotic behavior; nonoscillatory solutions
@article{ARM_1995_31_4_a2,
     author = {Thandapani, E. and Sundaram, P. and Graef, John R. and Miciano, A. and Spikes, Paul W.},
     title = {Classification of nonoscillatory solutions of higher order neutral type difference equations},
     journal = {Archivum mathematicum},
     pages = {263--277},
     year = {1995},
     volume = {31},
     number = {4},
     mrnumber = {1390585},
     zbl = {0855.39014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a2/}
}
TY  - JOUR
AU  - Thandapani, E.
AU  - Sundaram, P.
AU  - Graef, John R.
AU  - Miciano, A.
AU  - Spikes, Paul W.
TI  - Classification of nonoscillatory solutions of higher order neutral type difference equations
JO  - Archivum mathematicum
PY  - 1995
SP  - 263
EP  - 277
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a2/
LA  - en
ID  - ARM_1995_31_4_a2
ER  - 
%0 Journal Article
%A Thandapani, E.
%A Sundaram, P.
%A Graef, John R.
%A Miciano, A.
%A Spikes, Paul W.
%T Classification of nonoscillatory solutions of higher order neutral type difference equations
%J Archivum mathematicum
%D 1995
%P 263-277
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a2/
%G en
%F ARM_1995_31_4_a2
Thandapani, E.; Sundaram, P.; Graef, John R.; Miciano, A.; Spikes, Paul W. Classification of nonoscillatory solutions of higher order neutral type difference equations. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 263-277. http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a2/

Agarwal, R. P.: Difference Equations and Inequalities. Marcel Dekker, New York, 1992. | MR | Zbl

Erbe, L. H. and Zhang, B. G.: Oscillation of discrete analogues of delay equation. Diff. Integral Equations 2 (1989), 300-309. | MR

Georgiou, D. A., Grove, E. A. and Ladas, G.: Oscillation of neutral difference equations. Appl. Anal. 33 (1989), 243–253. | MR

Georgiou, D.  A., Grove, E.  A. and Ladas, G.: Oscillation of neutral difference equations with variable coefficients. in: “Differential Equations, Stability and Control", S. Elaydi (ed.), Lecture Notes Pure Appl. Math. Vol. 127, Dekker, New York, 1991, pp. 165–173. | MR

Lalli, B. S., Grace, S. R.: Oscillation theorems for second order neutral difference equations. J. Math. Anal. Appl. (to appear).

Lalli, B. S., Zhang, B. G.: On existence of positive solutions and bounded oscillations for netural difference equations. J. Math. Anal. Appl. 166 (1992), 272–278. | MR

Lalli, B. S., Zhang, B. G.: Oscillation and comparison theorems for certain difference equations. J. Aust. Math. Soc. Ser B. 34 (1992), 245–256. | MR

Lalli, B. S., Zhang, B. G.: Oscillation and comparison theorems for certain neutral difference equations. J. Aust. Math. Soc. Ser B. (to appear). | MR

Lalli, B. S., Zhang, B. G. and Li, J. Z.: On the oscillation of solutions and existence of positive solutions of neutral difference equations. J. Math. Anal. Appl. 158 (1991), 213–233. | MR

Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations: Numerical Methods and Applications. Math. in Science and Engineering Vol. 181, Academic Press, New York, 1988. | MR

Moore, R. E.: Computational Functional Analysis. Ellis Harwood Series, Halsted Press, New York, 1985. | MR | Zbl

Thandapani, E.: Asymptotic and oscillatory behavior of solutions of a second order nonlinear neutral delay difference equation. Riv. Math. Univ. Parma (5) 1 (1992), 105–113. | MR

Thandapani, E., Sundaram, P., Graef, J. R. and Spikes, P. W.: Asymptotic properties of solutions of nonlinear second order neutral delay difference equations. Dynamic Syst. Appl. 4 (1995), 125–136. | MR

Thandapani, E., Sundaram, P., Graef, J. R. and Spikes, P. W.: Asymptotic behavior and oscillation of solutions of neutral delay difference equations of arbitrary order. (to appear). | MR

Thandapani, E., Sundaram, P. and Györi, I.: On the behavior of solutions of first order nonlinear neutral difference equations. (to appear).

Thandapani, E., Sundaram, P. and Györi, I.: Oscillations of second order nonlinear neutral delay difference equations. (to appear). | MR

Zafer, A., Dahiya, R. S.: Oscillation of a neutral difference equation. Appl. Math. Lett. 6 (1993), 71–74. | MR