Oscillation of linear functional equations of higher order
Archivum mathematicum, Tome 31 (1995) no. 4, pp. 251-258 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper contains sufficient conditions under which all solutions of linear functional equations of the higher order are oscillatory.
The paper contains sufficient conditions under which all solutions of linear functional equations of the higher order are oscillatory.
Classification : 34C10, 39B12, 39B22, 39B72
Keywords: functional equation; oscillatory solutions
@article{ARM_1995_31_4_a0,
     author = {Nowakowska, W. and Werbowski, J.},
     title = {Oscillation of linear functional equations of higher order},
     journal = {Archivum mathematicum},
     pages = {251--258},
     year = {1995},
     volume = {31},
     number = {4},
     mrnumber = {1390583},
     zbl = {0871.39008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a0/}
}
TY  - JOUR
AU  - Nowakowska, W.
AU  - Werbowski, J.
TI  - Oscillation of linear functional equations of higher order
JO  - Archivum mathematicum
PY  - 1995
SP  - 251
EP  - 258
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a0/
LA  - en
ID  - ARM_1995_31_4_a0
ER  - 
%0 Journal Article
%A Nowakowska, W.
%A Werbowski, J.
%T Oscillation of linear functional equations of higher order
%J Archivum mathematicum
%D 1995
%P 251-258
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a0/
%G en
%F ARM_1995_31_4_a0
Nowakowska, W.; Werbowski, J. Oscillation of linear functional equations of higher order. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 251-258. http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a0/

[1] Golda, W., Werbowski, J.: Oscillation of linear functional equations of the second order. Funkcial. Ekvac. 37 (1994), 221-227. | MR

[2] Györi, I., Ladas, G.: Oscillation theory of delay differential equations with applications. Clarendon Press, Oxford, 1991. | MR

[3] Ladas, G., Philos, Ch. G., Sficas, Y. G.: Sharp conditions for the oscillation for delay difference equations. Journal of Applied Mathematics and Simulation 2 (1989), 101-112. | MR

[4] Ladde, G. S., Lakshmikantham. V., Zhang, B. G.: Oscillation theory of differential equations with deviating arguments. Marcel Dekker, Inc., New York, 1987. | MR