Oscillation of linear functional equations of higher order
Archivum mathematicum, Tome 31 (1995) no. 4, pp. 251-258
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The paper contains sufficient conditions under which all solutions of linear functional equations of the higher order are oscillatory.
The paper contains sufficient conditions under which all solutions of linear functional equations of the higher order are oscillatory.
Classification :
34C10, 39B12, 39B22, 39B72
Keywords: functional equation; oscillatory solutions
Keywords: functional equation; oscillatory solutions
@article{ARM_1995_31_4_a0,
author = {Nowakowska, W. and Werbowski, J.},
title = {Oscillation of linear functional equations of higher order},
journal = {Archivum mathematicum},
pages = {251--258},
year = {1995},
volume = {31},
number = {4},
mrnumber = {1390583},
zbl = {0871.39008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a0/}
}
Nowakowska, W.; Werbowski, J. Oscillation of linear functional equations of higher order. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 251-258. http://geodesic.mathdoc.fr/item/ARM_1995_31_4_a0/
[1] Golda, W., Werbowski, J.: Oscillation of linear functional equations of the second order. Funkcial. Ekvac. 37 (1994), 221-227. | MR
[2] Györi, I., Ladas, G.: Oscillation theory of delay differential equations with applications. Clarendon Press, Oxford, 1991. | MR
[3] Ladas, G., Philos, Ch. G., Sficas, Y. G.: Sharp conditions for the oscillation for delay difference equations. Journal of Applied Mathematics and Simulation 2 (1989), 101-112. | MR
[4] Ladde, G. S., Lakshmikantham. V., Zhang, B. G.: Oscillation theory of differential equations with deviating arguments. Marcel Dekker, Inc., New York, 1987. | MR