Some natural operators on vector fields
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 239-249 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We determine all natural operators transforming vector fields on a manifold $M$ to vector fields on $T^*T^2_1M$, $\operatorname{dim}M \ge 2$, and all natural operators transforming vector fields on $M$ to functions on $T^*TT^2_1M$, $\operatorname{dim}M \ge 3$. We describe some relations between these two kinds of natural operators.
We determine all natural operators transforming vector fields on a manifold $M$ to vector fields on $T^*T^2_1M$, $\operatorname{dim}M \ge 2$, and all natural operators transforming vector fields on $M$ to functions on $T^*TT^2_1M$, $\operatorname{dim}M \ge 3$. We describe some relations between these two kinds of natural operators.
Classification : 53A55, 58A20
Keywords: vector field; natural bundle; natural operator; Weil bundle
@article{ARM_1995_31_3_a6,
     author = {Tom\'a\v{s}, Ji\v{r}{\'\i}},
     title = {Some natural operators on vector fields},
     journal = {Archivum mathematicum},
     pages = {239--249},
     year = {1995},
     volume = {31},
     number = {3},
     mrnumber = {1368261},
     zbl = {0844.58007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a6/}
}
TY  - JOUR
AU  - Tomáš, Jiří
TI  - Some natural operators on vector fields
JO  - Archivum mathematicum
PY  - 1995
SP  - 239
EP  - 249
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a6/
LA  - en
ID  - ARM_1995_31_3_a6
ER  - 
%0 Journal Article
%A Tomáš, Jiří
%T Some natural operators on vector fields
%J Archivum mathematicum
%D 1995
%P 239-249
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a6/
%G en
%F ARM_1995_31_3_a6
Tomáš, Jiří. Some natural operators on vector fields. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 239-249. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a6/

[1] Cantrijn, F., Crampin, M., Sarlet, W. and Saunders, D.: The canonical isomorphism between $T^kT^*M$ and $T^*T^kM$. C. R. Acad. Sci. Paris 309 (1989), 1509-1514. | MR

[2] Kobak, P.: Natural liftings of vector fields to tangent bundles of $1$-forms. Mathematica Bohemica 116 (1991), 319-326. | MR

[3] Kolář, I.: Covariant Approach to Natural Transformations of Weil Bundles. Comment. Math. Univ. Carolinae (1986). | MR

[4] Kolář, I.: On Cotagent Bundles of Some Natural Bundles. to appear in Rendiconti del Circolo Matematico di Palermo. | MR

[5] Kolář, I.: On the Natural Operators on Vector Fields. Ann. Global Anal. Geometry 6 (1988), 109-117. | MR

[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer – Verlag, 1993. | MR

[7] Kolář, I., Radziszewski, Z.: Natural Transformations of Second Tangent and Cotangent Bundles. Czechoslovak Math. (1988), 274-279. | MR

[8] Modugno, M., Stefani, G.: Some results on second tangent and cotangent spaces. Quaderni dell’Università di Lecce (1978).