Keywords: vector field; natural bundle; natural operator; Weil bundle
@article{ARM_1995_31_3_a6,
author = {Tom\'a\v{s}, Ji\v{r}{\'\i}},
title = {Some natural operators on vector fields},
journal = {Archivum mathematicum},
pages = {239--249},
year = {1995},
volume = {31},
number = {3},
mrnumber = {1368261},
zbl = {0844.58007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a6/}
}
Tomáš, Jiří. Some natural operators on vector fields. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 239-249. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a6/
[1] Cantrijn, F., Crampin, M., Sarlet, W. and Saunders, D.: The canonical isomorphism between $T^kT^*M$ and $T^*T^kM$. C. R. Acad. Sci. Paris 309 (1989), 1509-1514. | MR
[2] Kobak, P.: Natural liftings of vector fields to tangent bundles of $1$-forms. Mathematica Bohemica 116 (1991), 319-326. | MR
[3] Kolář, I.: Covariant Approach to Natural Transformations of Weil Bundles. Comment. Math. Univ. Carolinae (1986). | MR
[4] Kolář, I.: On Cotagent Bundles of Some Natural Bundles. to appear in Rendiconti del Circolo Matematico di Palermo. | MR
[5] Kolář, I.: On the Natural Operators on Vector Fields. Ann. Global Anal. Geometry 6 (1988), 109-117. | MR
[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer – Verlag, 1993. | MR
[7] Kolář, I., Radziszewski, Z.: Natural Transformations of Second Tangent and Cotangent Bundles. Czechoslovak Math. (1988), 274-279. | MR
[8] Modugno, M., Stefani, G.: Some results on second tangent and cotangent spaces. Quaderni dell’Università di Lecce (1978).