Keywords: conjugate points; principal system of solutions; variational method; conjugacy criteria
@article{ARM_1995_31_3_a5,
author = {Do\v{s}l\'y, Ond\v{r}ej and Komenda, Jan},
title = {Conjugacy criteria and principal solutions of self-adjoint differential equations},
journal = {Archivum mathematicum},
pages = {217--238},
year = {1995},
volume = {31},
number = {3},
mrnumber = {1368260},
zbl = {0841.34033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a5/}
}
Došlý, Ondřej; Komenda, Jan. Conjugacy criteria and principal solutions of self-adjoint differential equations. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 217-238. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a5/
[1] Ahlbrandt, C.D., Hinton, D.B., Lewis, R.T.: The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory. J. Math. Anal. Appl. 81 (1981), 234-277. | MR
[2] Bliss, G. A.: Lectures on the Calculus of Variations, Chicago Press, Chicago 1946. | MR | Zbl
[3] Coppel, W. A.: Disconjugacy, Lecture Notes in Math. No 220, Springer Verlag, Berlin-Heidelberg 1971. | MR | Zbl
[4] Došlý, O.: The existence of conjugate points for self-adjoint linear differential equations. Proc. Roy. Soc. Edinburgh 113A (1989), 73-85. | MR
[5] Došlý, O.: Oscillation criteria and discreteness of the spectrum of self-adjoint, even order, differential operators. Proc. Roy. Soc. Edinburgh 119A (1991), 219-231. | MR
[6] Došlý, O., Osička, J.: Kneser-type oscillation criteria for self-adjoint two-term differential equations. Georgian Math. J. 2 (1995), 241-259. | MR
[7] Glazman, I. M.: Direct Methods of Qualitative Analysis of Singular Differential Operators, Jerusalem 1965. | Zbl
[8] Hawking, S. W., Penrose, R.: The singularities of gravity collapse and cosmology. Proc. Roy. Soc. London A314 (1970), 529-548. | MR
[9] Müller-Pfeiffer, E.: Existence of conjugate points for second and fourth order differential equations. Proc. Roy. Soc. Edinburgh 89A (1981), 281-91. | MR
[10] Müller-Pfeiffer, E.: An oscillation theorem for self- adjoint differential equations. Math. Nachr. 108 (1982), 79-92. | MR
[11] Müller-Pfeiffer, E.: Nodal Domains for One- and Two- Dimensional Elliptic Differential Equations. Z. Anal. Anwendungen 7 (1988), 135-139. | MR
[12] Reid, W. T.: Sturmian Theory for Ordinary Differential Equations, Acad. Press, New-York 1980. | MR | Zbl
[13] Tipler, F. J.: General relativity and conjugate ordinary differential equations. J. Diff. Equations 30 (1978), 165-174. | MR | Zbl