Conjugacy criteria and principal solutions of self-adjoint differential equations
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 217-238 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Oscillation properties of the self-adjoint, two term, differential equation \[(-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=0\qquad \mathrm {(*)}\] are investigated. Using the variational method and the concept of the principal system of solutions it is proved that (*) is conjugate on $R=(-\infty ,\infty )$ if there exist an integer $m\in \lbrace 0,1,\dots ,n-1\rbrace $ and $c_0,\dots ,c_m\in R$ such that \[\int _\infty ^0 x^{2(n-m-1)}p^{-1}(x)\,dx=\infty =\int _0^\infty x^{2(n-m-1)}p^{-1}(x)\,dx\] and \[\limsup _{x_1\downarrow -\infty ,x_2\uparrow \infty }\int _{x_1}^{x_2}q(x)(c_0+c_1x+\dots + c_mx^m)^2\,dx\le 0,\quad q(x)\lnot \equiv 0.\] Some extensions of this criterion are suggested.
Oscillation properties of the self-adjoint, two term, differential equation \[(-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=0\qquad \mathrm {(*)}\] are investigated. Using the variational method and the concept of the principal system of solutions it is proved that (*) is conjugate on $R=(-\infty ,\infty )$ if there exist an integer $m\in \lbrace 0,1,\dots ,n-1\rbrace $ and $c_0,\dots ,c_m\in R$ such that \[\int _\infty ^0 x^{2(n-m-1)}p^{-1}(x)\,dx=\infty =\int _0^\infty x^{2(n-m-1)}p^{-1}(x)\,dx\] and \[\limsup _{x_1\downarrow -\infty ,x_2\uparrow \infty }\int _{x_1}^{x_2}q(x)(c_0+c_1x+\dots + c_mx^m)^2\,dx\le 0,\quad q(x)\lnot \equiv 0.\] Some extensions of this criterion are suggested.
Classification : 34C10
Keywords: conjugate points; principal system of solutions; variational method; conjugacy criteria
@article{ARM_1995_31_3_a5,
     author = {Do\v{s}l\'y, Ond\v{r}ej and Komenda, Jan},
     title = {Conjugacy criteria and principal solutions of self-adjoint differential equations},
     journal = {Archivum mathematicum},
     pages = {217--238},
     year = {1995},
     volume = {31},
     number = {3},
     mrnumber = {1368260},
     zbl = {0841.34033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a5/}
}
TY  - JOUR
AU  - Došlý, Ondřej
AU  - Komenda, Jan
TI  - Conjugacy criteria and principal solutions of self-adjoint differential equations
JO  - Archivum mathematicum
PY  - 1995
SP  - 217
EP  - 238
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a5/
LA  - en
ID  - ARM_1995_31_3_a5
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%A Komenda, Jan
%T Conjugacy criteria and principal solutions of self-adjoint differential equations
%J Archivum mathematicum
%D 1995
%P 217-238
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a5/
%G en
%F ARM_1995_31_3_a5
Došlý, Ondřej; Komenda, Jan. Conjugacy criteria and principal solutions of self-adjoint differential equations. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 217-238. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a5/

[1] Ahlbrandt, C.D., Hinton, D.B., Lewis, R.T.: The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory. J. Math. Anal. Appl. 81 (1981), 234-277. | MR

[2] Bliss, G. A.: Lectures on the Calculus of Variations, Chicago Press, Chicago 1946. | MR | Zbl

[3] Coppel, W. A.: Disconjugacy, Lecture Notes in Math. No 220, Springer Verlag, Berlin-Heidelberg 1971. | MR | Zbl

[4] Došlý, O.: The existence of conjugate points for self-adjoint linear differential equations. Proc. Roy. Soc. Edinburgh 113A (1989), 73-85. | MR

[5] Došlý, O.: Oscillation criteria and discreteness of the spectrum of self-adjoint, even order, differential operators. Proc. Roy. Soc. Edinburgh 119A (1991), 219-231. | MR

[6] Došlý, O., Osička, J.: Kneser-type oscillation criteria for self-adjoint two-term differential equations. Georgian Math. J. 2 (1995), 241-259. | MR

[7] Glazman, I. M.: Direct Methods of Qualitative Analysis of Singular Differential Operators, Jerusalem 1965. | Zbl

[8] Hawking, S. W., Penrose, R.: The singularities of gravity collapse and cosmology. Proc. Roy. Soc. London A314 (1970), 529-548. | MR

[9] Müller-Pfeiffer, E.: Existence of conjugate points for second and fourth order differential equations. Proc. Roy. Soc. Edinburgh 89A (1981), 281-91. | MR

[10] Müller-Pfeiffer, E.: An oscillation theorem for self- adjoint differential equations. Math. Nachr. 108 (1982), 79-92. | MR

[11] Müller-Pfeiffer, E.: Nodal Domains for One- and Two- Dimensional Elliptic Differential Equations. Z. Anal. Anwendungen 7 (1988), 135-139. | MR

[12] Reid, W. T.: Sturmian Theory for Ordinary Differential Equations, Acad. Press, New-York 1980. | MR | Zbl

[13] Tipler, F. J.: General relativity and conjugate ordinary differential equations. J. Diff. Equations 30 (1978), 165-174. | MR | Zbl