A commutativity theorem for associative rings
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 201-204 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $m > 1, s\geq 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \geq 0, q = q(x) \geq 0, n = n(x) \geq 0, r = r(x) \geq 0 $ such that either $ x^{p}[x^{n},y]x^{q} = x^{r}[x,y^{m}]y^{s} $ or $ x^{p}[x^{n},y]x^{q} = y^{s}[x,y^{m}]x^{r} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$).
Let $m > 1, s\geq 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \geq 0, q = q(x) \geq 0, n = n(x) \geq 0, r = r(x) \geq 0 $ such that either $ x^{p}[x^{n},y]x^{q} = x^{r}[x,y^{m}]y^{s} $ or $ x^{p}[x^{n},y]x^{q} = y^{s}[x,y^{m}]x^{r} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$).
Classification : 16R50, 16U70, 16U80
Keywords: polynomial identity; nilpotent element; commutator ideal; associative ring; torsion free ring; center; commutativity
@article{ARM_1995_31_3_a3,
     author = {Ashraf, Mohammad},
     title = {A commutativity theorem for associative rings},
     journal = {Archivum mathematicum},
     pages = {201--204},
     year = {1995},
     volume = {31},
     number = {3},
     mrnumber = {1368258},
     zbl = {0839.16030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a3/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
TI  - A commutativity theorem for associative rings
JO  - Archivum mathematicum
PY  - 1995
SP  - 201
EP  - 204
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a3/
LA  - en
ID  - ARM_1995_31_3_a3
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%T A commutativity theorem for associative rings
%J Archivum mathematicum
%D 1995
%P 201-204
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a3/
%G en
%F ARM_1995_31_3_a3
Ashraf, Mohammad. A commutativity theorem for associative rings. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 201-204. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a3/

[1] Abujabal H. A. S.: On commutativity of left s-unital rings. Acta Sci. Math. (Szeged) 56 (1992), 51-62. | MR | Zbl

[2] Abujabal H. A. S., Obaid M. A.: Some commutativity theorems for right s-unital rings. Math. Japonica, 37, No. 3 (1992), 591-600. | MR | Zbl

[3] Ashraf M., Quadri M. A.: On commutativity of associative rings with constraints involving a subset. Rad. Mat.5 (1989), 141-149. | MR | Zbl

[4] Ashraf M., Jacob V. W.: On certain polynomial identities implying commutativity for rings. (submitted). | Zbl

[5] Bell H. E.: On the power map and ring commutativity. Canad. Math. Bull. 21 (1978), 399-404. | MR | Zbl

[6] Bell H. E.: Commutativity of rings with constraints on commutators. Resultate der Math. 8 (1985), 123-131. | MR | Zbl

[7] Hermanci A.: Two elementary commutativity theorems for rings. Acta Math. Acad.Sci. Hungar. 29 (1977),23-29. | MR

[8] Jacobson N.: Structure of rings. 37 (Amer. Math. Soc. Colloq. Publ. Providence, 1956). | MR | Zbl

[9] Kezlan T. P.: A note on commutativity of semi-prime PI- rings. Math. Japonica 27 (1982) 267-268. | MR

[10] Kezlan T. P.: A commutativity theorem involving certain polynomial constraints. Math. Japonica 36, No. 4 (1991),785-789. | MR | Zbl

[11] Kezlan T. P.: On commutativity theorems for PI-rings with unity. Tamkang J. math. 24 No. 1 (1993), 29-36. | MR

[12] Komatsu H.: A commutativity theorem for rings. Math. J. Okayama Univ. 26 (1984), 135-139. | MR | Zbl

[13] Komatsu H.: A commutativity theorem for rings-II. Osaka J. Math. 22 (1985), 811-814. | MR | Zbl

[14] Nicholson W. K., Yaqub A.: A commutativity theorem for rings and groups. Canad. Math. Bull. 22 (1979), 419-423. | MR | Zbl

[15] Psomopoulos E.: A commutativity theorem for rings involving a subset of the ring. Glasnik Mat. 18 (1983), 231-236. | MR | Zbl

[16] Psomopoulos E.: Commutativity theorems for rings and groups with constraints on commutators. Internat. J. Math. & Math. Sci. 7 No. 3(1984), 513-517. | MR | Zbl