Total connections in Lie groupoids
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 183-200
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A total connection of order $r$ in a Lie groupoid $\Phi $ over $M$ is defined as a first order connections in the $(r-1)$-st jet prolongations of $\Phi $. A connection in the groupoid $\Phi $ together with a linear connection on its base, ie. in the groupoid $\Pi (M)$, give rise to a total connection of order $r$, which is called simple. It is shown that this simple connection is curvature-free iff the generating connections are. Also, an $r$-th order total connection in $\Phi $ defines a total reduction of the $r$-th prolongation of $\Phi $ to $\Phi \times \Pi (M)$. It is shown that when $r>2$ then this total reduction of a simple connection is holonomic iff the generating connections are curvature free and the one on $M$ also torsion-free.
A total connection of order $r$ in a Lie groupoid $\Phi $ over $M$ is defined as a first order connections in the $(r-1)$-st jet prolongations of $\Phi $. A connection in the groupoid $\Phi $ together with a linear connection on its base, ie. in the groupoid $\Pi (M)$, give rise to a total connection of order $r$, which is called simple. It is shown that this simple connection is curvature-free iff the generating connections are. Also, an $r$-th order total connection in $\Phi $ defines a total reduction of the $r$-th prolongation of $\Phi $ to $\Phi \times \Pi (M)$. It is shown that when $r>2$ then this total reduction of a simple connection is holonomic iff the generating connections are curvature free and the one on $M$ also torsion-free.
Classification : 53C05, 58A20
Keywords: Lie groupoids; semi-holonomic jets; higher order connections; total connections; simple connections
@article{ARM_1995_31_3_a2,
     author = {Virsik, George},
     title = {Total connections in {Lie} groupoids},
     journal = {Archivum mathematicum},
     pages = {183--200},
     year = {1995},
     volume = {31},
     number = {3},
     mrnumber = {1368257},
     zbl = {0841.53024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a2/}
}
TY  - JOUR
AU  - Virsik, George
TI  - Total connections in Lie groupoids
JO  - Archivum mathematicum
PY  - 1995
SP  - 183
EP  - 200
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a2/
LA  - en
ID  - ARM_1995_31_3_a2
ER  - 
%0 Journal Article
%A Virsik, George
%T Total connections in Lie groupoids
%J Archivum mathematicum
%D 1995
%P 183-200
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a2/
%G en
%F ARM_1995_31_3_a2
Virsik, George. Total connections in Lie groupoids. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 183-200. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a2/

[1] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes. C.R.A.S. Paris 239 (1954), 1762–1764. | MR | Zbl

[2] Ehresmann, C.: Sur les connexions d’ordre supérieur. Atti V$^\circ $ Cong. Un. Mat. Italiana, Pavia - Torino, 1956, 326–328.

[3] Kolř, I.: Some higher order operations with connections. Czechoslovak Math. J. 24 (99) (1974), 311–330. | MR

[4] Kolř, I.: A generalization of the torsion form. Čas. pěst. mat. 100 (1975), 284–290. | MR

[5] Kolř, I.: Torsion-free connections on higher order frame bundles. (to appear).

[6] Kolř, I., Michor, P. W., Slov k, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. | MR

[7] Kolř, I., Virsik, G.: Connections in first principal prolongations. (to appear).

[8] Que, N.: Du prolongement des espaces fibrés et des structures infinitésimales. Ann. Inst. Fourier, 17, (1967), 157–223. | MR | Zbl

[9] Virsik, J. (George): A generalized point of view to higher order connections on fibre bundles. Czechoslovak Math. J. 19 (94) (1969), 110–142. | MR

[10] Virsik, J. (George): On the holonomity of higher order connections. Cahiers Top. Géom. Diff. 12 (1971), 197–212. | MR

[11] Yuen P. C.: Higher order frames and linear connections. Cahiers Top. Géom. Diff. 12 (1971), 333–337. | MR | Zbl