Pre-solid varieties of semigroups
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 171-181 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Pre-hyperidentities generalize the concept of a hyperidentity. A variety $V$ is said to be pre-solid if every identity in $V$ is a pre-hyperidentity. Every solid variety is pre-solid. We consider pre-solid varieties of semigroups which are not solid, determine the smallest and the largest of them, and some elements in this interval.
Pre-hyperidentities generalize the concept of a hyperidentity. A variety $V$ is said to be pre-solid if every identity in $V$ is a pre-hyperidentity. Every solid variety is pre-solid. We consider pre-solid varieties of semigroups which are not solid, determine the smallest and the largest of them, and some elements in this interval.
Classification : 08B15, 20M07
Keywords: hyperidentity; pre-hyperidentity; pre-solid variety
@article{ARM_1995_31_3_a1,
     author = {Denecke, K. and Koppitz, J.},
     title = {Pre-solid varieties of semigroups},
     journal = {Archivum mathematicum},
     pages = {171--181},
     year = {1995},
     volume = {31},
     number = {3},
     mrnumber = {1368256},
     zbl = {0842.20049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a1/}
}
TY  - JOUR
AU  - Denecke, K.
AU  - Koppitz, J.
TI  - Pre-solid varieties of semigroups
JO  - Archivum mathematicum
PY  - 1995
SP  - 171
EP  - 181
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a1/
LA  - en
ID  - ARM_1995_31_3_a1
ER  - 
%0 Journal Article
%A Denecke, K.
%A Koppitz, J.
%T Pre-solid varieties of semigroups
%J Archivum mathematicum
%D 1995
%P 171-181
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a1/
%G en
%F ARM_1995_31_3_a1
Denecke, K.; Koppitz, J. Pre-solid varieties of semigroups. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 171-181. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a1/

[1] Denecke K., Koppitz J.: Hyperassociative semigroups. Semigroup Forum, Vol. 49,(1994) 41-48. | MR

[2] Denecke K., Lau D., Pöschel R., Schweigert D.: Hyperidentities, hyperequational classes and clone congruences. Contributions to General Algebra 7, Verlag Hölder-Pichler-Tempsky, Wien 1991 - Verlag B.G. Teubner, Stuttgart (1991) 97-118. | MR | Zbl

[3] Denecke K., Wismath S. L.: Solid varieties of semigroups. Semigroup Forum, Vol. 48, (1994) 219-234. | MR | Zbl

[4] Denecke K., Płonka J.: On regularizations and normalizations of solid varieties. in: General Algebra and Discrete Mathematics, Berlin 1995, 83-92.

[5] Denecke K., Koppitz J.: Presolid varieties of commutative semigroups. preprint 1993. | MR

[6] Denecke K., Lau D., Pöschel R., Schweigert D.: Free Clones and Solid Varieties. preprint 1993. | MR

[7] Denecke K.: Pre-solid varieties. Demonstratio Mathematica, Vol. 27, 3-4 (1994), 741-750. | MR | Zbl

[8] Evans T.: The lattice of semigroup varieties. Semigroup Forum Vol.2, No 1 (1971) 1-43. | MR | Zbl

[9] Graczyńska E.: On Normal and Regular Identities and Hyperidentities. Universal and Applied Algebra, Proceedings of the V Universal Algebra Symposium, Turawa, Poland, 3-7 May, 1988, World Scientific, Singapore, New Jersey, London, Hong Kong (1989) 107-135. | MR

[10] Graczyńska E., Schweigert D.: Hyperidentities of a given type. Algebra Universalis 27(1990), 305-318. | MR

[11] Mal’cev I. A.: Iterative Post’s Algebras (russian). Novosibirsk 1976.

[12] Płonka J.: On hyperidentities of some varieties. preprint 1993.

[13] Pöschel R., Reichel M.: Projection algebras and rectangular algebras. General Algebra and Applications, Heldermann-Verlag, Berlin, (1993) 180-194. | MR | Zbl

[14] Taylor W.: Hyperidentities and hypervarieties. Aequationes Mathematicae 23(1981), 111-127. | MR | Zbl

[15] Wismath S.: Hyperidentity Bases for rectangular bands and other semigroup varieties. to appear in Journal of the Australian Math. Society. | MR | Zbl