@article{ARM_1995_31_3_a0,
author = {Youssef, Samy A. and Hulsurkar, S. G.},
title = {On connectedness of graphs on {Weyl} groups of type $A\sb n$ ($n\geq 4$)},
journal = {Archivum mathematicum},
pages = {163--170},
year = {1995},
volume = {31},
number = {3},
mrnumber = {1368255},
zbl = {0854.20052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a0/}
}
Youssef, Samy A.; Hulsurkar, S. G. On connectedness of graphs on Weyl groups of type $A\sb n$ ($n\geq 4$). Archivum mathematicum, Tome 31 (1995) no. 3, pp. 163-170. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a0/
[1] Samy A. Youssef: Graphs on Weyl Groups. Ph.D. Thesis, Indian Institute of Technology, Kharagpur, July,1992.
[2] Samy A. Youssef, Hulsurkar S. G.: More on the Girth of Graphs on Weyl Groups. Archivum Mathematicum, 29 (1993) 19-23. | MR
[3] Hulsurkar S. G.: Proof of Verma’s conjecture on Weyl’s dimension polynomial. Invent. Math., 27 (1974) 45-52. | MR | Zbl
[4] Chastkofsky L.: Variation on Hulsurkar’s matrix with applications to representation of algebraic Chevalley groups. J. Algebra, 82 (1983) 253-274. | MR
[5] Verma D. N.: The role of Affine Weyl groups in the representation theory of Algebraic Chevalley groups and their representations. Lie groups and their representations. Ed. I.M. Gelfand, John Wiley and Sons, New York, 1975.
[6] Bourbaki N.: Groupes et algebries de Lie. Chap. IV-VI, Herman, Paris, 1969.
[7] Deo, Narsingh: Graph theory with applications to Engineering and Computer Science. Prentice Hall of India, New Delhi, 1990. | MR