On connectedness of graphs on Weyl groups of type $A\sb n$ ($n\geq 4$)
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 163-170
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C25, 05E10, 20F55
@article{ARM_1995_31_3_a0,
     author = {Youssef, Samy A. and Hulsurkar, S. G.},
     title = {On connectedness of graphs on {Weyl} groups of type $A\sb n$ ($n\geq 4$)},
     journal = {Archivum mathematicum},
     pages = {163--170},
     year = {1995},
     volume = {31},
     number = {3},
     mrnumber = {1368255},
     zbl = {0854.20052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a0/}
}
TY  - JOUR
AU  - Youssef, Samy A.
AU  - Hulsurkar, S. G.
TI  - On connectedness of graphs on Weyl groups of type $A\sb n$ ($n\geq 4$)
JO  - Archivum mathematicum
PY  - 1995
SP  - 163
EP  - 170
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a0/
LA  - en
ID  - ARM_1995_31_3_a0
ER  - 
%0 Journal Article
%A Youssef, Samy A.
%A Hulsurkar, S. G.
%T On connectedness of graphs on Weyl groups of type $A\sb n$ ($n\geq 4$)
%J Archivum mathematicum
%D 1995
%P 163-170
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a0/
%G en
%F ARM_1995_31_3_a0
Youssef, Samy A.; Hulsurkar, S. G. On connectedness of graphs on Weyl groups of type $A\sb n$ ($n\geq 4$). Archivum mathematicum, Tome 31 (1995) no. 3, pp. 163-170. http://geodesic.mathdoc.fr/item/ARM_1995_31_3_a0/

[1] Samy A. Youssef: Graphs on Weyl Groups. Ph.D. Thesis, Indian Institute of Technology, Kharagpur, July,1992.

[2] Samy A. Youssef, Hulsurkar S. G.: More on the Girth of Graphs on Weyl Groups. Archivum Mathematicum, 29 (1993) 19-23. | MR

[3] Hulsurkar S. G.: Proof of Verma’s conjecture on Weyl’s dimension polynomial. Invent. Math., 27 (1974) 45-52. | MR | Zbl

[4] Chastkofsky L.: Variation on Hulsurkar’s matrix with applications to representation of algebraic Chevalley groups. J. Algebra, 82 (1983) 253-274. | MR

[5] Verma D. N.: The role of Affine Weyl groups in the representation theory of Algebraic Chevalley groups and their representations. Lie groups and their representations. Ed. I.M. Gelfand, John Wiley and Sons, New York, 1975.

[6] Bourbaki N.: Groupes et algebries de Lie. Chap. IV-VI, Herman, Paris, 1969.

[7] Deo, Narsingh: Graph theory with applications to Engineering and Computer Science. Prentice Hall of India, New Delhi, 1990. | MR