An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients
Archivum mathematicum, Tome 31 (1995) no. 2, pp. 155-161 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our aim in this paper is to obtain a new oscillation criterion for equation \[ y^{\prime \prime \prime }+ p(t)y^{\prime } + q(t)y = 0 \] with a nonnegative coefficients which extends and improves some oscillation criteria for this equation. In the special case of equation (*), namely, for equation $ y^{\prime \prime \prime }+ q(t)y = 0$, our results solve the open question of $Chanturiya$.
Our aim in this paper is to obtain a new oscillation criterion for equation \[ y^{\prime \prime \prime }+ p(t)y^{\prime } + q(t)y = 0 \] with a nonnegative coefficients which extends and improves some oscillation criteria for this equation. In the special case of equation (*), namely, for equation $ y^{\prime \prime \prime }+ q(t)y = 0$, our results solve the open question of $Chanturiya$.
Classification : 34C10, 34C11
Keywords: nonoscillatory and oscillatory solution; second order Riccati equation
@article{ARM_1995_31_2_a6,
     author = {\v{S}kerl{\'\i}k, Anton},
     title = {An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients},
     journal = {Archivum mathematicum},
     pages = {155--161},
     year = {1995},
     volume = {31},
     number = {2},
     mrnumber = {1357983},
     zbl = {0843.34039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a6/}
}
TY  - JOUR
AU  - Škerlík, Anton
TI  - An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients
JO  - Archivum mathematicum
PY  - 1995
SP  - 155
EP  - 161
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a6/
LA  - en
ID  - ARM_1995_31_2_a6
ER  - 
%0 Journal Article
%A Škerlík, Anton
%T An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients
%J Archivum mathematicum
%D 1995
%P 155-161
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a6/
%G en
%F ARM_1995_31_2_a6
Škerlík, Anton. An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 155-161. http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a6/

[1] Barrett, J. H.: Oscillation Theory of Ordinary Linear Differential Equation. Advances in Math. 3 (1969), 415–509. | MR

[2] Chanturiya, T. A. and Kiguradze, I. T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Nauka, Moscow, 1990. (in Russian)

[3] Džurina, J.: Asymptotic properties of third-order differential equations with deviating argument. Czech. Math. J. 44 (1994), 163–172. | MR

[4] Erbe, L.: Existence of oscillatory solutions and asymtotic behavior for a class of a third order linear differential equations. Pacific J. Math. 64 (1976), 369–385. | MR

[5] Greguš, M.: Linear differential equation of the third order. Veda, Bratislava, 1981. (in Slovak) | MR

[6] Hanan, M.: Oscillation criteria for a third order linear differential equations. Pacific J. Math. 11 (1961), 919–944. | MR

[7] Heidel, J.W.: Qualitative behavior of solutions of a third order nonlinear differential equation. Pacific J. Math. 27 (1968), 507–526. | MR | Zbl

[8] Khvedelidze, N. N., Chanturiya, T. A.: Oscillation of solutions of third-order linear ordinary differential equations. Differencialnye Uravneniya 27 (1991), no. 3, 4, 452–460, 611–618. (in Russian) | MR

[9] Kiguradze, I. T.: On the oscillation of solutions of the equation $d^m/dt^m+a(t)|u|^n sign\,u= 0$. Mat. Sb. 65 (1964), 172–187. (in Russian) | MR | Zbl

[10] Kiguradze, I. T.: Some singular value problems for ordinary differential equations. University Press, Tbilisi (1975). (in Russian) | MR

[11] Lazer, A. C.: The behavior of solutions of the differential equation $y^{\prime \prime \prime } + p(x)y^{\prime } + q(x)y = 0$. Pacific J. Math. 17 (1966), 435–466. | MR | Zbl

[12] Rovder, J.: Oscillation criteria for third-order linear differential equations. Mat. Časopis 25 (1975), 231–244. | MR | Zbl

[13] Škerlík, A.: Integral criteria of oscillation for a third order linear differential equation. Math. Slovaca (to appear). | MR

[14] Škerlík, A.: Oscillation theorems for third order nonlinear differential equations. Math. Slovaca 42 (1992), 471–484. | MR

[15] Šoltés, V.: Oscillatory properties of solutions of a third order nonlinear differential equations. Math.Slovaca 26 (1976), 217–227. (in Russian)

[16] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York-London, 1968. | MR | Zbl