Keywords: ternary semigroup; mono-n-ary structure; mono-n-ary algebra; category; homomorphism; strong homomorphism; isomorphism
@article{ARM_1995_31_2_a5,
author = {Chronowski, Antoni and Novotn\'y, Miroslav},
title = {Ternary semigroups of morphisms of objects in categories},
journal = {Archivum mathematicum},
pages = {147--153},
year = {1995},
volume = {31},
number = {2},
mrnumber = {1357982},
zbl = {0839.20078},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a5/}
}
Chronowski, Antoni; Novotný, Miroslav. Ternary semigroups of morphisms of objects in categories. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 147-153. http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a5/
[1] MacLane S.: Categories for the working mathematician. Springer, New York - Heidelberg - Berlin 1971. | MR
[2] Monk D., Sioson F. M.: m-Semigroups, semigroups, and function representation. Fund. Math. 59 (1966), 233-241. | MR
[3] Novotný M.: Construction of all strong homomorphisms of binary structures. Czech. Math. J. 41 (116) (1991), 300-311. | MR
[4] Novotný M.: Ternary structures and groupoids. Czech. Math. J. 41 (116) (1991), 90-98. | MR
[5] Novotný M.: On some correspondences between relational structures and algebras. Czech. Math. J. 43 (118) (1993), 643-647. | MR
[6] Novotný M.: Construction of all homomorphisms of groupoids. presented to Czech. Math. J.
[7] Pultr A., Trnková V.: Combinatorial, algebraic and topological representations of groups, semigroups and categories. Academia, Prague 1980. | MR
[8] Sioson F. M.: Ideal theory in ternary semigroups. Math. Japon. 10 (1965), 63-84. | MR | Zbl