Ternary semigroups of morphisms of objects in categories
Archivum mathematicum, Tome 31 (1995) no. 2, pp. 147-153 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper the notion of a ternary semigroup of morphisms of objects in a category is introduced. The connection between an isomorphism of categories and an isomorphism of ternary semigroups of morphisms of suitable objects in these categories is considered. Finally, the results obtained for general categories are applied to the categories $\bold{ REL}n+1$ and $\bold {ALG}n$ which were studied in [5].
In this paper the notion of a ternary semigroup of morphisms of objects in a category is introduced. The connection between an isomorphism of categories and an isomorphism of ternary semigroups of morphisms of suitable objects in these categories is considered. Finally, the results obtained for general categories are applied to the categories $\bold{ REL}n+1$ and $\bold {ALG}n$ which were studied in [5].
Classification : 08A02, 08A62, 18B10, 20N10, 20N15
Keywords: ternary semigroup; mono-n-ary structure; mono-n-ary algebra; category; homomorphism; strong homomorphism; isomorphism
@article{ARM_1995_31_2_a5,
     author = {Chronowski, Antoni and Novotn\'y, Miroslav},
     title = {Ternary semigroups of morphisms of objects in categories},
     journal = {Archivum mathematicum},
     pages = {147--153},
     year = {1995},
     volume = {31},
     number = {2},
     mrnumber = {1357982},
     zbl = {0839.20078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a5/}
}
TY  - JOUR
AU  - Chronowski, Antoni
AU  - Novotný, Miroslav
TI  - Ternary semigroups of morphisms of objects in categories
JO  - Archivum mathematicum
PY  - 1995
SP  - 147
EP  - 153
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a5/
LA  - en
ID  - ARM_1995_31_2_a5
ER  - 
%0 Journal Article
%A Chronowski, Antoni
%A Novotný, Miroslav
%T Ternary semigroups of morphisms of objects in categories
%J Archivum mathematicum
%D 1995
%P 147-153
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a5/
%G en
%F ARM_1995_31_2_a5
Chronowski, Antoni; Novotný, Miroslav. Ternary semigroups of morphisms of objects in categories. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 147-153. http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a5/

[1] MacLane S.: Categories for the working mathematician. Springer, New York - Heidelberg - Berlin 1971. | MR

[2] Monk D., Sioson F. M.: m-Semigroups, semigroups, and function representation. Fund. Math. 59 (1966), 233-241. | MR

[3] Novotný M.: Construction of all strong homomorphisms of binary structures. Czech. Math. J. 41 (116) (1991), 300-311. | MR

[4] Novotný M.: Ternary structures and groupoids. Czech. Math. J. 41 (116) (1991), 90-98. | MR

[5] Novotný M.: On some correspondences between relational structures and algebras. Czech. Math. J. 43 (118) (1993), 643-647. | MR

[6] Novotný M.: Construction of all homomorphisms of groupoids. presented to Czech. Math. J.

[7] Pultr A., Trnková V.: Combinatorial, algebraic and topological representations of groups, semigroups and categories. Academia, Prague 1980. | MR

[8] Sioson F. M.: Ideal theory in ternary semigroups. Math. Japon. 10 (1965), 63-84. | MR | Zbl