Prolongation of tangent valued forms to Weil bundles
Archivum mathematicum, Tome 31 (1995) no. 2, pp. 139-145 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that the so-called complete lifting of tangent valued forms from a manifold $M$ to an arbitrary Weil bundle over $M$ preserves the Frölicher-Nijenhuis bracket. We also deduce that the complete lifts of connections are torsion-free in the sense of M. Modugno and the second author.
We prove that the so-called complete lifting of tangent valued forms from a manifold $M$ to an arbitrary Weil bundle over $M$ preserves the Frölicher-Nijenhuis bracket. We also deduce that the complete lifts of connections are torsion-free in the sense of M. Modugno and the second author.
Classification : 53C05, 58A20
Keywords: Weil bundle; tangent valued form; Frölicher-Nijenhuis bracket; complete lift; connection; torsion
@article{ARM_1995_31_2_a4,
     author = {Cabras, Antonella and Kol\'a\v{r}, Ivan},
     title = {Prolongation of tangent valued forms to {Weil} bundles},
     journal = {Archivum mathematicum},
     pages = {139--145},
     year = {1995},
     volume = {31},
     number = {2},
     mrnumber = {1357981},
     zbl = {0843.53021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a4/}
}
TY  - JOUR
AU  - Cabras, Antonella
AU  - Kolář, Ivan
TI  - Prolongation of tangent valued forms to Weil bundles
JO  - Archivum mathematicum
PY  - 1995
SP  - 139
EP  - 145
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a4/
LA  - en
ID  - ARM_1995_31_2_a4
ER  - 
%0 Journal Article
%A Cabras, Antonella
%A Kolář, Ivan
%T Prolongation of tangent valued forms to Weil bundles
%J Archivum mathematicum
%D 1995
%P 139-145
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a4/
%G en
%F ARM_1995_31_2_a4
Cabras, Antonella; Kolář, Ivan. Prolongation of tangent valued forms to Weil bundles. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 139-145. http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a4/

[1] Gancarzewicz, J.: Complete lifts of tensor fields of type $(1, k)$ to natural bundles. Zeszyty Nauk. UJ, Krak¢w 23 (1982), 43–79. | MR | Zbl

[2] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. to appear in Nagoya Math. J. | MR

[3] Kol ©, I.: Covariant approach to natural transformations of Weil functors. Comment. Math. Univ. Carolinae 27 (1986), 723–729. | MR

[4] Kol ©, I., Michor, P. W., Slov k, J.: Natural operations in differential geometry. Springer-Verlag 1993. | MR

[5] Kol ©, I. Modugno, M.: Torsions of connections on some natural bundles. Differential Geometry and Its Applications 2 (1992), 1–16. | MR

[6] Mangiarotti, L. Modugno. M.: Graded Lie algebras and connections on a fibred space. Journ. Math. Pures and Appl. 83 (1984), 111–120. | MR

[7] Morimoto, A.: Prolongations of connections to bundles of infinitely near points. J. Diff. Geo. 11 (1976), 479–498. | MR

[8] Slov k, J.: Prolongations of connections and sprays with respect to Weil functors. Suppl. Rendiconti Circolo Mat. Palermo, Serie II 14 (1987), 143–155. | MR

[9] Weil, A.: Théorie des pointes proches sur les variétés différentielles. Colloque de topologie et géométrie différentielle, Strasbourg (1953), 111–117. | MR