Liftings of $1$-forms to the linear $r$-tangent bundle
Archivum mathematicum, Tome 31 (1995) no. 2, pp. 97-111
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $r,n$ be fixed natural numbers. We prove that for $n$-manifolds the set of all linear natural operators $T^*\rightarrow T^*T^{(r)}$ is a finitely dimensional vector space over $R$. We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators $T^*\rightarrow T^{r*}$.
Let $r,n$ be fixed natural numbers. We prove that for $n$-manifolds the set of all linear natural operators $T^*\rightarrow T^*T^{(r)}$ is a finitely dimensional vector space over $R$. We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators $T^*\rightarrow T^{r*}$.
Classification : 53A55, 58A20
Keywords: linear r-tangent bundle; linear natural operator; 1-form
@article{ARM_1995_31_2_a1,
     author = {Mikulski, W. M.},
     title = {Liftings of $1$-forms to the linear $r$-tangent bundle},
     journal = {Archivum mathematicum},
     pages = {97--111},
     year = {1995},
     volume = {31},
     number = {2},
     mrnumber = {1357978},
     zbl = {0844.58006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a1/}
}
TY  - JOUR
AU  - Mikulski, W. M.
TI  - Liftings of $1$-forms to the linear $r$-tangent bundle
JO  - Archivum mathematicum
PY  - 1995
SP  - 97
EP  - 111
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a1/
LA  - en
ID  - ARM_1995_31_2_a1
ER  - 
%0 Journal Article
%A Mikulski, W. M.
%T Liftings of $1$-forms to the linear $r$-tangent bundle
%J Archivum mathematicum
%D 1995
%P 97-111
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a1/
%G en
%F ARM_1995_31_2_a1
Mikulski, W. M. Liftings of $1$-forms to the linear $r$-tangent bundle. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 97-111. http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a1/

[1] Doupovec, M., Kurek, J.: Liftings of covariant $(0,2)$-tensor fields to the bundle of $k$-dimensional $1$-velocities. Suppl. Rend. Circ. Mat. Palermo (in press).

[2] Gancarzewicz, J., Mahi, S.: Liftings of 1-forms to the tangent bundle of higher order. Czech. Math. J. 40 (115) (1990), 397–407. | MR

[3] Jany¨ka, J.: Natural operations with projectable tangent valued forms on fibered manifolds. Annali di Math. CLIX (1991), 171–184.

[4] Kol ©, I., Michor, P. W., Slov k, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR

[5] Kurek, J.: On the first order natural operators transforming 1-forms on a manifold to linear frame bundle. Demonstratio Math. 26 (1993), 287–293. | MR

[6] Kurek, J.: On the first order natural operators transforming 1-forms on a manifold to the tangent bundle. Ann. U.M.C.S. 43 (1989), 79–83. | MR | Zbl

[7] Mikulski, W. M.: The natural operators lifting 1-forms on manifolds to the bundles of $A$-velocities. Mh. Math., 119 (1995), 63–77. | MR | Zbl

[8] Mikulski, W. M.: The geometrical constructions lifting tensor fields of type (0,2) on manifolds to the bundles of $A$-velocities. Nagoya Math. J., 140 (1995) (in press). | MR | Zbl

[9] Yano, K., Ishihara, S.: Tangent and cotangent bundles. Marcel Dekker, INC. , New York, 1973. | MR