Keywords: linear r-tangent bundle; linear natural operator; 1-form
@article{ARM_1995_31_2_a1,
author = {Mikulski, W. M.},
title = {Liftings of $1$-forms to the linear $r$-tangent bundle},
journal = {Archivum mathematicum},
pages = {97--111},
year = {1995},
volume = {31},
number = {2},
mrnumber = {1357978},
zbl = {0844.58006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a1/}
}
Mikulski, W. M. Liftings of $1$-forms to the linear $r$-tangent bundle. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 97-111. http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a1/
[1] Doupovec, M., Kurek, J.: Liftings of covariant $(0,2)$-tensor fields to the bundle of $k$-dimensional $1$-velocities. Suppl. Rend. Circ. Mat. Palermo (in press).
[2] Gancarzewicz, J., Mahi, S.: Liftings of 1-forms to the tangent bundle of higher order. Czech. Math. J. 40 (115) (1990), 397–407. | MR
[3] Jany¨ka, J.: Natural operations with projectable tangent valued forms on fibered manifolds. Annali di Math. CLIX (1991), 171–184.
[4] Kol ©, I., Michor, P. W., Slov k, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR
[5] Kurek, J.: On the first order natural operators transforming 1-forms on a manifold to linear frame bundle. Demonstratio Math. 26 (1993), 287–293. | MR
[6] Kurek, J.: On the first order natural operators transforming 1-forms on a manifold to the tangent bundle. Ann. U.M.C.S. 43 (1989), 79–83. | MR | Zbl
[7] Mikulski, W. M.: The natural operators lifting 1-forms on manifolds to the bundles of $A$-velocities. Mh. Math., 119 (1995), 63–77. | MR | Zbl
[8] Mikulski, W. M.: The geometrical constructions lifting tensor fields of type (0,2) on manifolds to the bundles of $A$-velocities. Nagoya Math. J., 140 (1995) (in press). | MR | Zbl
[9] Yano, K., Ishihara, S.: Tangent and cotangent bundles. Marcel Dekker, INC. , New York, 1973. | MR