Keywords: Self-adjoint equation; reciprocal equation; property BD; principal solution; minimal differential operator.Supported by the Grant No. 201/93/0452 of the Czech Grant Agency
@article{ARM_1995_31_2_a0,
author = {Do\v{s}l\'y, Ond\v{r}ej},
title = {Generalized reciprocity for self-adjoint linear differential equations},
journal = {Archivum mathematicum},
pages = {85--96},
year = {1995},
volume = {31},
number = {2},
mrnumber = {1357977},
zbl = {0841.34032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a0/}
}
Došlý, Ondřej. Generalized reciprocity for self-adjoint linear differential equations. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 85-96. http://geodesic.mathdoc.fr/item/ARM_1995_31_2_a0/
[1] Ahlbrandt, C. D.: Principal and antiprincipal solutions of selfadjoint diferential systems and their reciprocals. Rocky Mountain J. Math. 2 (1972), 169–189. | MR
[2] Ahlbrandt, C. D.: Equivalent boundary value problems for self-adjoint differential systems. J. Diff. Equations 9 (1971), 420–435. | MR | Zbl
[3] Ahlbrandt, C. D., Hinton, D. B., Lewis, R. T.: The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory. J. Math. Anal. Appl. 81 (1981), 234–277. | MR
[4] Ahlbrandt, C. D., Hinton, D. B., Lewis, R. T.: Necessary and sufficient conditions for the discreteness of the spectrum of certain singular differential operators. Canad J. Math. 33 (1981), 229–246. | MR
[5] Coppel, W. A.: Disconjugacy. Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. | MR | Zbl
[6] Došlý, O.: On transformation of self-adjoint linear diferential systems and their reciprocals. Annal. Pol. Math. 50 (1990), 223–234.
[7] Došlý, O.: Oscillation criteria and the discreteness of the spectrum of self-adjoint, even order, differential operators. Proc. Roy. Soc. Edinburgh 119A (1991), 219–232.
[8] Došlý, O.: Transformations of linear Hamiltonian systems preserving oscillatory behaviour. Arch. Math. 27 (1991), 211–219. | MR
[9] Došlý, O.: Principal solutions and transformations of linear Hamiltonian systems. Arch. Math. 28 (1992), 113–120. | MR
[10] Došlý, O., Osička, J.: Kneser type oscillation criteria for self-adjoint differential equations. Georgian Math. J. 2 (1995), 241–258. | MR
[11] Dunford, N., Schwartz, J. T.: Linear Operators II, Spectral Theory. Interscience, New York 1982.
[12] Evans, W. D., Kwong, M. K., Zettl, A.: Lower bounds for spectrum of ordinary differential operators. J. Diff. Equations 48 (1983), 123–155. | MR
[13] Glazman, I. M.: Direct Methods of Qualitative Analysis of Singular Differential Operators. Jerusalem 1965.
[14] Hinton, D. B., Lewis, R. T.: Discrete spectra criteria for singular differential operators with middle terms. Math. Proc. Cambridge Philos. Soc. 77 (1975), 337–347. | MR
[15] Lewis, R. T.: The discreteness of the spectrum of self-adjoint, even order, differential operators. Proc. Amer. Mat. Soc. 42 (1974), 480–482. | MR
[16] Müller-Pfeiffer, E.: Spectral Theory of Ordinary Differential Operators. Chelsea, 1981. | MR
[17] Naimark, M. A.: Linear Differential Operators. Part II, Ungar, New York, 1968. | Zbl
[18] Reid, W. T.: Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York 1980. | MR | Zbl
[19] Rasmussen, C. H.: Oscillation and asymptotic behaviour of systems of ordinary linear differential equations. Trans. Amer. Math. Soc. 256 (1979), 1–48. | MR