Parallelisability conditions for differentiable three-webs
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 75-84 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our aim is to find conditions under which a 3-web on a smooth $2n$-dimensional manifold is locally equivalent with a web formed by three systems of parallel $n$-planes in ${R}^{2n}$. We will present here a new approach to this “classical” problem using projectors onto the distributions of tangent subspaces to the leaves of foliations forming the web.
Our aim is to find conditions under which a 3-web on a smooth $2n$-dimensional manifold is locally equivalent with a web formed by three systems of parallel $n$-planes in ${R}^{2n}$. We will present here a new approach to this “classical” problem using projectors onto the distributions of tangent subspaces to the leaves of foliations forming the web.
Classification : 53A60
Keywords: distribution; projector; manifold; three-web; regular (parallelisable) web
@article{ARM_1995_31_1_a8,
     author = {Van\v{z}urov\'a, Alena},
     title = {Parallelisability conditions for differentiable three-webs},
     journal = {Archivum mathematicum},
     pages = {75--84},
     year = {1995},
     volume = {31},
     number = {1},
     mrnumber = {1342378},
     zbl = {0835.53019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a8/}
}
TY  - JOUR
AU  - Vanžurová, Alena
TI  - Parallelisability conditions for differentiable three-webs
JO  - Archivum mathematicum
PY  - 1995
SP  - 75
EP  - 84
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a8/
LA  - en
ID  - ARM_1995_31_1_a8
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%T Parallelisability conditions for differentiable three-webs
%J Archivum mathematicum
%D 1995
%P 75-84
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a8/
%G en
%F ARM_1995_31_1_a8
Vanžurová, Alena. Parallelisability conditions for differentiable three-webs. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a8/

[1] Akivis, M. A.: Three-webs of multidimensional surfaces. Trudy geom. seminara 2 (1969), 7–31. (Russian) | MR

[2] Akivis, M. A.: Local differentiable quasigroups and three-webs of multidimensional surfaces. Studies in the Theory of Quasigroups and Loops, Stiintsa, Kishinev, 1973, pp. 3 – 12. (Russian) | MR

[3] Chern, S. S.: Eine Invariantentheorie der $3$-Gewebe aus $r$-dimensionalen Mannigfaltigkeiten in $R^{2n}$. Abhandl. Math. Sem. Hamburg Univ. 11 (1936), 333–358.

[4] Chern, S. S.: Web Geometry. Bull. Am. Math. Soc. 6 (1982), 1–8. | MR | Zbl

[5] Čadek, M., Šim¨a, J.: Decomposition of smooth functions of two multicodimensional variables. Czech. Math. J. 41(116) (1991), Praha, 342–358. | MR

[6] Goldberg, V. V.: Theory of multicodimensional $(n+1)$-webs. Kluwer Academic Publishers, Dordrecht (Boston, London), 1988. | MR | Zbl

[7] Goldberg, V. V.: Local differentiable quasigroups and webs. In: O Chein, H.O. Pflugfelder, J.D.H. Smith (eds.) Quasigroups and Loops, 1990. | MR | Zbl

[8] Kikkawa, M.: Canonical connections of homogeneous Lie loops and $3$-webs. Mem. Fac. Sci Shimane Univ 19 (1985), 37–55. | MR | Zbl

[9] Kikkawa, M.: Projectivity of homogeneous left loops. “Nonassociative algebras and relative topics”, World Scientific, 1991, pp. 77–99. | MR | Zbl

[10] Nagy, P. T.: On the canonical connection of a three-web. Publ. Math. Debrecen 32 (1985), 93-99. | MR

[11] Nagy, P. T.: Invariant tensor fields and the canonical connection of a $3$-web. Aeq. Math. 35 (1988), University of Waterloo, Birkhäuser Verlag, Basel, 31-44.

[12] Šim¨a, J.: Some factorization of matrix functions in several variables. Arch. Math. 28 (1992), Brno, 85–94. | MR

[13] Vanžura, J.: Integrability conditions for polynomial structures. Kōdai Math. Sem. Rep. 27 (1976), 42–50. | MR

[14] Vanžura, J.: Simultaneous integrability of an almost tangent structure and a distribution. Demonstratio Mathematica XIX No 1 (1986), 359–370. | MR

[15] Vanžurová, A.: On $(3,2,n)$-webs. Acta Sci. Math. 59 No 3-4, Szeged. | MR | Zbl

[16] Vanžurová, A.: On three-web manifolds. Report of the Czech Meeting 1993 on Incidence Structures, PU Olomouc, pp. 56–66.

[17] Vanžurová, A.: On torsion of a three-web. ( to appear).

[18] Walker, G. A.: Almost-product structures. Differential geometry, Proc. of Symp. in Pure Math. vol. III, pp. 94-100. | MR | Zbl

[19] Kopáček, J.: Matematika pro fyziky II. MFF UK, Praha, 1975.

[20] Pham Mau Quam: Introduction à la gomtrie des varits diffrentiables. Dunod, Paris, 1968.

[21] Shelekhov, A.: A good formula for $3$-web curvature tensor. Webs & Quasigroups 1 (1993), 44–50. | MR

[22] Vinogradov, A. M., Yumaguzhin, V. A.: Differential invariants of webs on $2$-dimensional manifolds. Mat. Zametki 48, 26–37. | MR