Diamond identities for relative congruences
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 65-74 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a class $K$ of structures and $A\in K$ let ${Con}^*(A)$ resp. ${Con}^{K}(A)$ denote the lattices of $*$-congruences resp. $K$-congruences of $A$, cf. Weaver [25]. Let ${Con}^*(K):=I\lbrace {Con}^*(A)\colon\ A \in K\rbrace $ where $I$ is the operator of forming isomorphic copies, and ${Con}^r(K):=I\lbrace {Con}^{K}(A)\colon\ A \in K\rbrace $. For an ordered algebra $A$ the lattice of order congruences of $A$ is denoted by ${Con}^{}(A)$, and let ${Con}^{}(K):=I\lbrace {Con}^{}(A)\colon\ A \in K\rbrace $ if $K$ is a class of ordered algebras. The operators of forming subdirect squares and direct products are denoted by $Q^s$ and $P$, respectively. Let $\lambda $ be a lattice identity and let $\Sigma $ be a set of lattice identities. Let $\Sigma \mathrel {\models _c}\lambda\ (r;Q^s,P)$ denote that for every class $K$ of structures which is closed under $Q^s$ and $P$ if $\Sigma $ holds is ${Con}^r(K)$ then so does $\lambda$. The consequence relations $\Sigma \mathrel {\models _c}\lambda\ (*;Q^s)$,   $\Sigma \mathrel {\models _c}\lambda\ (\le ;Q^s)$ and $\Sigma \mathrel {\models _c}\lambda\ (H,S,P)$ are defined analogously; the latter is the usual consequence relation in congruence varieties (cf. Jónsson [19]), so it will also be denoted simply by $\mathrel {\models _c}$. If $\Sigma \lnot \models \lambda $ (in the class of all lattices) then the above-mentioned consequences are called nontrivial. The present paper shows that if $\Sigma \models$ modularity and $\Sigma \mathrel {\models _c}\lambda $ is a known result in the theory of congruence varieties then $\Sigma \mathrel {\models _c}\lambda\ (*; Q^s)$, $\Sigma \mathrel {\models _c}\lambda\ (\le ;Q^s)$ and $\Sigma \mathrel {\models _c}\lambda\ (r;Q^s,P)$ as well. In most of these cases $\lambda $ is a diamond identity in the sense of [3].
For a class $K$ of structures and $A\in K$ let ${Con}^*(A)$ resp. ${Con}^{K}(A)$ denote the lattices of $*$-congruences resp. $K$-congruences of $A$, cf. Weaver [25]. Let ${Con}^*(K):=I\lbrace {Con}^*(A)\colon\ A \in K\rbrace $ where $I$ is the operator of forming isomorphic copies, and ${Con}^r(K):=I\lbrace {Con}^{K}(A)\colon\ A \in K\rbrace $. For an ordered algebra $A$ the lattice of order congruences of $A$ is denoted by ${Con}^{}(A)$, and let ${Con}^{}(K):=I\lbrace {Con}^{}(A)\colon\ A \in K\rbrace $ if $K$ is a class of ordered algebras. The operators of forming subdirect squares and direct products are denoted by $Q^s$ and $P$, respectively. Let $\lambda $ be a lattice identity and let $\Sigma $ be a set of lattice identities. Let $\Sigma \mathrel {\models _c}\lambda\ (r;Q^s,P)$ denote that for every class $K$ of structures which is closed under $Q^s$ and $P$ if $\Sigma $ holds is ${Con}^r(K)$ then so does $\lambda$. The consequence relations $\Sigma \mathrel {\models _c}\lambda\ (*;Q^s)$,   $\Sigma \mathrel {\models _c}\lambda\ (\le ;Q^s)$ and $\Sigma \mathrel {\models _c}\lambda\ (H,S,P)$ are defined analogously; the latter is the usual consequence relation in congruence varieties (cf. Jónsson [19]), so it will also be denoted simply by $\mathrel {\models _c}$. If $\Sigma \lnot \models \lambda $ (in the class of all lattices) then the above-mentioned consequences are called nontrivial. The present paper shows that if $\Sigma \models$ modularity and $\Sigma \mathrel {\models _c}\lambda $ is a known result in the theory of congruence varieties then $\Sigma \mathrel {\models _c}\lambda\ (*; Q^s)$, $\Sigma \mathrel {\models _c}\lambda\ (\le ;Q^s)$ and $\Sigma \mathrel {\models _c}\lambda\ (r;Q^s,P)$ as well. In most of these cases $\lambda $ is a diamond identity in the sense of [3].
Classification : 06C05, 08A30, 08B10
Keywords: Congruence variety; relative congruence; ordered algebra; von Neumann frame; lattice identity
@article{ARM_1995_31_1_a7,
     author = {Cz\'edli, G\'abor},
     title = {Diamond identities for relative congruences},
     journal = {Archivum mathematicum},
     pages = {65--74},
     year = {1995},
     volume = {31},
     number = {1},
     mrnumber = {1342377},
     zbl = {0842.08004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a7/}
}
TY  - JOUR
AU  - Czédli, Gábor
TI  - Diamond identities for relative congruences
JO  - Archivum mathematicum
PY  - 1995
SP  - 65
EP  - 74
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a7/
LA  - en
ID  - ARM_1995_31_1_a7
ER  - 
%0 Journal Article
%A Czédli, Gábor
%T Diamond identities for relative congruences
%J Archivum mathematicum
%D 1995
%P 65-74
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a7/
%G en
%F ARM_1995_31_1_a7
Czédli, Gábor. Diamond identities for relative congruences. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a7/

[1] Bloom, S. L.: Varieties of ordered algebras. J. Comput. System Sci. 13 (1976), 200-212. | MR | Zbl

[2] Czédli, G.: Notes on congruence implications. Archivum Mathematicum (Brno) 27 (1991), 149-153. | MR

[3] Czédli, G.: How are diamond identities implied in congruence varieties. Algebra Universalis 30 (1993), 291-293. | MR

[4] Czédli, G.: Some nontrivial implications in congruence varieties. Acta Sci. Math. (Szeged) 56 (1992), 15-18. | MR

[5] Czédli, G.: On the lattice of congruence varieties of locally equational classes. Acta Sci. Math. (Szeged) 41 (1979), 39-45. | MR

[6] Czédli, G., Lenkehegyi, A.: On congruence $n$-distributivity of ordered algebras. Acta Math. Hungar. 41 (1983), 17-26. | MR

[7] Day, A.: $p$-modularity implies modularity in equational classes. Algebra Universalis 3 (1973), 398-399. | MR | Zbl

[8] Day, A., Freese, R.: A characterization of identities implying congruence modularity I. Canadian J. Math. 32 (1980), 1140-1167. | MR

[9] Dziobiak, W.: Relative congruence-distributivity within quasivarieties of nearly associative $\varphi $-algebras. Fund. Math. 135 (1990), 77-95. | MR

[10] Freese, R.: The class of Arguesian lattices is not a congruence variety. Notices Amer. Math. Soc. 23 (1976), #76T-A181.

[11] Freese, R., Herrmann, C., Huhn, A. P.: On some identities valid in modular congruence varieties. Algebra Universalis 12 (1982), 322-334. | MR

[12] Freese, R., Jónsson, B.: Congruence modularity implies the Arguesian identity. Algebra Universalis 6 (1976), 225-228. | MR

[13] Hagemann, J., Herrmann, C.: A concrete ideal multiplication for algebraic systems and its relation with congruence distributivity. Arch. Math. 32 (1979), 234-245. | MR

[14] Herrmann, C.: On the arithmetic of projective coordinate systems. Trans. Amer. Math. Soc. 284 (1984), 759-785. | MR | Zbl

[15] Herrmann, C., Huhn, A. P.: Lattices of normal subgroups which are generated by frames. Lattice Theory, Proc. Conf. Szeged 1974, Coll. Mat. Soc. J. Bolyai vol. 14, North-Holland, Amsterdam, 1976, pp. 97-136. | MR

[16] Huhn, A. P.: Schwach distributive Verbände I. Acta Sci.Math. 33 (1972), 297-305. | MR | Zbl

[17] Huhn, A. P.: On Grätzer’s problem concerning automorphisms of a finitely presented lattice. Algebra Universalis 5 (1975), 65-71. | MR

[18] Hutchinson, G., Czédli, G.: A test for identities satisfied in lattices of submodules. Algebra Universalis 8 (1978), 269-309. | MR

[19] Jónsson, B.: Congruence varieties. Algebra Universalis 10 (1980), 355-394. | MR

[20] Kearnes, K., McKenzie R.: Commutator theory for relatively modular quasivarieties. Transactions of the AMS 331 (1992), 465-502. | MR

[21] Mederly, P.: Three Mal’cev type theorems and their applications. Math. Časopis Sloven. Akad. Vied. 25 (1975), 83-95. | MR

[22] Nation, J. B.: Varieties whose congruences satisfy certain lattice identities. Algebra Universalis 4 (1974), 78-88. | MR | Zbl

[23] Nurakunov, A. M.: Characterization of relatively distributive quasivarieties of algebras. Algebra and Logic 29 (1990), 451-458. | MR | Zbl

[24] Pixley, A. F.: Local Mal’cev conditions. Canadian Math. Bull. 15 (1972), 559-568. | MR

[25] Weaver, N.: Generalized varieties. Algebra Universalis 30 (1993), 27-52. | MR | Zbl

[26] Wille, R.: Kongruenzklassengeometrien. Lecture Notes in Math., vol. 113, Springer-Verlag, Berlin — Heidelberg — New York, 1970. | MR | Zbl