Property (A) of the $n$-th order differential equations with deviating argument
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 59-63 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The equation to be considered is \[ L_ny(t)+p(t)y(\tau (t))=0. \] The aim of this paper is to derive sufficient conditions for property (A) of this equation.
The equation to be considered is \[ L_ny(t)+p(t)y(\tau (t))=0. \] The aim of this paper is to derive sufficient conditions for property (A) of this equation.
Classification : 34C10, 34K15, 34K25
Keywords: property (A); degree of solution
@article{ARM_1995_31_1_a6,
     author = {\v{S}olt\'es, Vincent},
     title = {Property {(A)} of the $n$-th order differential equations with deviating argument},
     journal = {Archivum mathematicum},
     pages = {59--63},
     year = {1995},
     volume = {31},
     number = {1},
     mrnumber = {1342376},
     zbl = {0830.34057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a6/}
}
TY  - JOUR
AU  - Šoltés, Vincent
TI  - Property (A) of the $n$-th order differential equations with deviating argument
JO  - Archivum mathematicum
PY  - 1995
SP  - 59
EP  - 63
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a6/
LA  - en
ID  - ARM_1995_31_1_a6
ER  - 
%0 Journal Article
%A Šoltés, Vincent
%T Property (A) of the $n$-th order differential equations with deviating argument
%J Archivum mathematicum
%D 1995
%P 59-63
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a6/
%G en
%F ARM_1995_31_1_a6
Šoltés, Vincent. Property (A) of the $n$-th order differential equations with deviating argument. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 59-63. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a6/

[1] Džurina, J.: Comparison theorems for nonlinear ODE’s. Math. Slovaca 42 (1992), 299–315. | MR

[2] Džurina, J.: Property (A) of third-order differential equations with deviating argument. Math. Slovaca 44 (1994). | MR

[3] Foster, K. E., Grimmer, R. C.: Nonoscillatory solutions of higher order differential equations. J. Math. Anal. Appl. 71 (1979), 1–17. | MR

[4] Kiguradze, I.: On the oscillation of solutions of the equation $d^mu/dt^m + a(t)|u|^n sign\,u = 0$. Mat. Sb 65 (1964), 172–187. (Russian) | MR | Zbl

[5] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–532. | MR

[6] Naito, M.: On strong oscillation of retarded differential equations. Hiroshima Math. J. 11 (1981), 553–560. | MR | Zbl

[7] Šeda, V.: Nonoscillatory solutions of differential equations with deviating argument. Czech. Math. J. 36 (1986), 93–107. | MR

[8] Škerlík, A.: Oscillation theorems for third order nonlinear differential equations. Math. Slovaca 42 (1992), 471–484. | MR