The generalized boundary value problem is a Fredholm mapping of index zero
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 55-58 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper it is proved that each generalized boundary value problem for the n-th order linear differential equation generates a Fredholm mapping of index zero.
In the paper it is proved that each generalized boundary value problem for the n-th order linear differential equation generates a Fredholm mapping of index zero.
Classification : 34B05, 34B99, 47N20
Keywords: generalized BVP; Fredholm mapping
@article{ARM_1995_31_1_a5,
     author = {Rudolf, Boris},
     title = {The generalized boundary value problem is a {Fredholm} mapping of index zero},
     journal = {Archivum mathematicum},
     pages = {55--58},
     year = {1995},
     volume = {31},
     number = {1},
     mrnumber = {1342375},
     zbl = {0830.34013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a5/}
}
TY  - JOUR
AU  - Rudolf, Boris
TI  - The generalized boundary value problem is a Fredholm mapping of index zero
JO  - Archivum mathematicum
PY  - 1995
SP  - 55
EP  - 58
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a5/
LA  - en
ID  - ARM_1995_31_1_a5
ER  - 
%0 Journal Article
%A Rudolf, Boris
%T The generalized boundary value problem is a Fredholm mapping of index zero
%J Archivum mathematicum
%D 1995
%P 55-58
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a5/
%G en
%F ARM_1995_31_1_a5
Rudolf, Boris. The generalized boundary value problem is a Fredholm mapping of index zero. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 55-58. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a5/

[1] Hartman, P.: Ordinary differential equations. John Wiley & Sons, New York-London-Sydney, 1964. | MR | Zbl

[2] Šeda, V.: Fredholm mappings and the generalized boundary value problem. Differential and Integral Equations 8 (1995), 19–40. | MR

[3] Trenogin, V. A.: Functional analysis. Nauka, Moscow, 1980. (Russian) | MR | Zbl