The generalized boundary value problem is a Fredholm mapping of index zero
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 55-58
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the paper it is proved that each generalized boundary value problem for the n-th order linear differential equation generates a Fredholm mapping of index zero.
In the paper it is proved that each generalized boundary value problem for the n-th order linear differential equation generates a Fredholm mapping of index zero.
@article{ARM_1995_31_1_a5,
author = {Rudolf, Boris},
title = {The generalized boundary value problem is a {Fredholm} mapping of index zero},
journal = {Archivum mathematicum},
pages = {55--58},
year = {1995},
volume = {31},
number = {1},
mrnumber = {1342375},
zbl = {0830.34013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a5/}
}
Rudolf, Boris. The generalized boundary value problem is a Fredholm mapping of index zero. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 55-58. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a5/
[1] Hartman, P.: Ordinary differential equations. John Wiley & Sons, New York-London-Sydney, 1964. | MR | Zbl
[2] Šeda, V.: Fredholm mappings and the generalized boundary value problem. Differential and Integral Equations 8 (1995), 19–40. | MR
[3] Trenogin, V. A.: Functional analysis. Nauka, Moscow, 1980. (Russian) | MR | Zbl