On some iteration semigroups
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 37-42
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $F$ be a disjoint iteration semigroup of $C^n$ diffeomorphisms mapping a real open interval $I\ne \varnothing $ onto $I$. It is proved that if $F$ has a dense orbit possesing a subset of the second category with the Baire property, then $F=\lbrace f_t\:\,f_t(x)=f^{-1}(f(x)+t)\text{ for every }x\in I, t\in R\rbrace $ for some $C^n$ diffeomorphism $f$ of $I$ onto the set of all reals $R$. The paper generalizes some results of J.A.Baker and G.Blanton [3].
Let $F$ be a disjoint iteration semigroup of $C^n$ diffeomorphisms mapping a real open interval $I\ne \varnothing $ onto $I$. It is proved that if $F$ has a dense orbit possesing a subset of the second category with the Baire property, then $F=\lbrace f_t\:\,f_t(x)=f^{-1}(f(x)+t)\text{ for every }x\in I, t\in R\rbrace $ for some $C^n$ diffeomorphism $f$ of $I$ onto the set of all reals $R$. The paper generalizes some results of J.A.Baker and G.Blanton [3].
Classification : 26A18, 39B12, 39B22
Keywords: iteration semigroup; diffeomorphism; ordered semigroup; Baire property
@article{ARM_1995_31_1_a3,
     author = {Brzd\k{e}k, Janusz},
     title = {On some iteration semigroups},
     journal = {Archivum mathematicum},
     pages = {37--42},
     year = {1995},
     volume = {31},
     number = {1},
     mrnumber = {1342373},
     zbl = {0834.39011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a3/}
}
TY  - JOUR
AU  - Brzdęk, Janusz
TI  - On some iteration semigroups
JO  - Archivum mathematicum
PY  - 1995
SP  - 37
EP  - 42
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a3/
LA  - en
ID  - ARM_1995_31_1_a3
ER  - 
%0 Journal Article
%A Brzdęk, Janusz
%T On some iteration semigroups
%J Archivum mathematicum
%D 1995
%P 37-42
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a3/
%G en
%F ARM_1995_31_1_a3
Brzdęk, Janusz. On some iteration semigroups. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 37-42. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a3/

[1] Aczél, J.: Funktionskomposition, Iterationsgruppen und Gewebe. Arch. Math. (Basel) 17 (1966), 469-475. | MR

[2] Baker, J.: A note on iteration groups. Aequationes Math. 28 (1985), 129-131. | MR | Zbl

[3] Baker, J., Blanton, G.: Iteration groups generated by $C^n$ functions. Arch. Math. (Brno) 18 (1982), 121-127. | MR

[4] Blanton, G.: Smoothness in disjoint groups of real functions under composition. C.R.Math. Rep. Acad. Sci. Canada 5 (1983), 169-172. | MR | Zbl

[5] Blanton, G.: Smoothness in disjoint groups of real functions under composition. Aequationes Math. 35 (1988), 1-16. | MR | Zbl

[6] Fuchs, L.: Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris, 1963. | MR | Zbl

[7] Kominek, Z., Kuczma, M.: Therems of Berstein-Doetsch, Piccard and Mehdi and semilinear topology. Arch. Math. (Basel) 52 (1989), 595-602. | MR

[8] Neuman, F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107) (1982), 488-494. | MR | Zbl

[9] Oxtoby, J.: Measure and Category. Graduate Texts in Mathematics 2, Springer-Verlag, New York-Heidelberg-Berlin, 1971. | MR | Zbl