Keywords: iteration semigroup; diffeomorphism; ordered semigroup; Baire property
@article{ARM_1995_31_1_a3,
author = {Brzd\k{e}k, Janusz},
title = {On some iteration semigroups},
journal = {Archivum mathematicum},
pages = {37--42},
year = {1995},
volume = {31},
number = {1},
mrnumber = {1342373},
zbl = {0834.39011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a3/}
}
Brzdęk, Janusz. On some iteration semigroups. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 37-42. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a3/
[1] Aczél, J.: Funktionskomposition, Iterationsgruppen und Gewebe. Arch. Math. (Basel) 17 (1966), 469-475. | MR
[2] Baker, J.: A note on iteration groups. Aequationes Math. 28 (1985), 129-131. | MR | Zbl
[3] Baker, J., Blanton, G.: Iteration groups generated by $C^n$ functions. Arch. Math. (Brno) 18 (1982), 121-127. | MR
[4] Blanton, G.: Smoothness in disjoint groups of real functions under composition. C.R.Math. Rep. Acad. Sci. Canada 5 (1983), 169-172. | MR | Zbl
[5] Blanton, G.: Smoothness in disjoint groups of real functions under composition. Aequationes Math. 35 (1988), 1-16. | MR | Zbl
[6] Fuchs, L.: Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris, 1963. | MR | Zbl
[7] Kominek, Z., Kuczma, M.: Therems of Berstein-Doetsch, Piccard and Mehdi and semilinear topology. Arch. Math. (Basel) 52 (1989), 595-602. | MR
[8] Neuman, F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107) (1982), 488-494. | MR | Zbl
[9] Oxtoby, J.: Measure and Category. Graduate Texts in Mathematics 2, Springer-Verlag, New York-Heidelberg-Berlin, 1971. | MR | Zbl