Oscillatory properties of solutions of second order nonlinear neutral differential inequalities with oscillating coefficients
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 29-36 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with the second order nonlinear neutral differential inequalities $(A_\nu )$: $(-1)^\nu x(t)\,\lbrace \,z^{\prime \prime }(t)+(-1)^\nu q(t)\,f(x(h(t))) \rbrace \le 0,\ $ $t\ge t_0\ge 0,$ where $\ \nu =0\ $ or $\ \nu =1,\ $ $\ z(t)\,=\,x(t)\,+\,p(t)\,x(t-\tau ),\ $ $\ 0\tau =\ $ const, $\ p,q,h:[t_0,\infty )\rightarrow R\ $ $\ f:R\rightarrow R\ $ are continuous functions. There are proved sufficient conditions under which every bounded solution of $(A_\nu )$ is either oscillatory or $\ \liminf \limits _{t\rightarrow \infty }|x(t)|=0.$
This paper deals with the second order nonlinear neutral differential inequalities $(A_\nu )$: $(-1)^\nu x(t)\,\lbrace \,z^{\prime \prime }(t)+(-1)^\nu q(t)\,f(x(h(t))) \rbrace \le 0,\ $ $t\ge t_0\ge 0,$ where $\ \nu =0\ $ or $\ \nu =1,\ $ $\ z(t)\,=\,x(t)\,+\,p(t)\,x(t-\tau ),\ $ $\ 0\tau =\ $ const, $\ p,q,h:[t_0,\infty )\rightarrow R\ $ $\ f:R\rightarrow R\ $ are continuous functions. There are proved sufficient conditions under which every bounded solution of $(A_\nu )$ is either oscillatory or $\ \liminf \limits _{t\rightarrow \infty }|x(t)|=0.$
Classification : 34A40, 34C10, 34K11, 34K15, 34K25, 34K40
Keywords: neutral differential equations; oscillatory (nonoscillatory) solutions
@article{ARM_1995_31_1_a2,
     author = {Grammatikopoulos, M. K. and Maru\v{s}iak, P.},
     title = {Oscillatory properties of solutions of second order nonlinear neutral differential inequalities with oscillating coefficients},
     journal = {Archivum mathematicum},
     pages = {29--36},
     year = {1995},
     volume = {31},
     number = {1},
     mrnumber = {1342372},
     zbl = {0832.34066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a2/}
}
TY  - JOUR
AU  - Grammatikopoulos, M. K.
AU  - Marušiak, P.
TI  - Oscillatory properties of solutions of second order nonlinear neutral differential inequalities with oscillating coefficients
JO  - Archivum mathematicum
PY  - 1995
SP  - 29
EP  - 36
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a2/
LA  - en
ID  - ARM_1995_31_1_a2
ER  - 
%0 Journal Article
%A Grammatikopoulos, M. K.
%A Marušiak, P.
%T Oscillatory properties of solutions of second order nonlinear neutral differential inequalities with oscillating coefficients
%J Archivum mathematicum
%D 1995
%P 29-36
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a2/
%G en
%F ARM_1995_31_1_a2
Grammatikopoulos, M. K.; Marušiak, P. Oscillatory properties of solutions of second order nonlinear neutral differential inequalities with oscillating coefficients. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a2/

[1] Bainov, D. D., Mishev, D. P.: Oscillation Theory for Neutral Equations with Delay. Adam Hilger IOP Pablisching Ltd. (1991) 288pp..

[2] Grammatikopoulos, M. K., Grove, E. A., Ladas, G.: Oscillation and asymptotic behavior of second order neutral differential equations with deviating arguments. Canad. Math. Soc. V8 (1967) 153$-$161. | MR

[3] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: Asymptotic Properties of Solutions of Neutral Delay Differential Equations of the Second Order. Radovi Matematički $\ V_4\ $ (1988) 113 $-$149.

[4] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: On the Asymptitic Behavior of Solutions of Second Order Nonlinear Neutral Delay Differential Equations. Journal Math. Anal. Appl. V156 $N_1$ (1991) 23$-$39. | MR

[5] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: Asymptotic Behavior of Nonoscillatory Solutions of Neutral Delay Differential Equations of Arbitrary Order. Nonlinear Analysis, Theory, Math., Appl. V21, N1 (1993) 23$-$42. | MR

[6] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. Clear. Press., Oxford (1991) 368pp. | MR

[7] Jaroš, J., Kussano, T.: Sufficient conditions for oscillations of higher order linear functional differential equations of neutral type. Japan J. Math.15 (1989) 415$-$432. | MR

[8] Jaroš, J., Kusano, T.: Oscillation properties of first order nonlinear functional differential equations of neutral type. Diff. and Int. Equat. (1991) 425$-$436. | MR

[9] Kusano, T., Onose, H.: Nonoscillation theorems for differential equation with deviating argument. Pacific J. Math. 63, $N_1$ (1976) 185$-$192. | MR