Parametrized relaxation for evolution inclusions of the subdifferential type
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 9-28 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider parametric nonlinear evolution inclusions driven by time-dependent subdifferentials. First we prove some continuous dependence results for the solution set (of both the convex and nonconvex problems) and for the set of solution-selector pairs (of the convex problem). Then we derive a continuous version of the “Filippov-Gronwall” inequality and using it, we prove the parametric relaxation theorem. An example of a parabolic distributed parameter system is also worked out in detail.
In this paper we consider parametric nonlinear evolution inclusions driven by time-dependent subdifferentials. First we prove some continuous dependence results for the solution set (of both the convex and nonconvex problems) and for the set of solution-selector pairs (of the convex problem). Then we derive a continuous version of the “Filippov-Gronwall” inequality and using it, we prove the parametric relaxation theorem. An example of a parabolic distributed parameter system is also worked out in detail.
Classification : 34A60, 34G20, 46N20, 49J52, 93C20
Keywords: subdifferential; relaxation theorem; Filippov-Gronwall inequality; lower semicontinuous multifunction; continuous selector; weak norm
@article{ARM_1995_31_1_a1,
     author = {Papageorgiou, Nikolaos S.},
     title = {Parametrized relaxation for evolution inclusions of the subdifferential type},
     journal = {Archivum mathematicum},
     pages = {9--28},
     year = {1995},
     volume = {31},
     number = {1},
     mrnumber = {1342371},
     zbl = {0839.34075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a1/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
TI  - Parametrized relaxation for evolution inclusions of the subdifferential type
JO  - Archivum mathematicum
PY  - 1995
SP  - 9
EP  - 28
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a1/
LA  - en
ID  - ARM_1995_31_1_a1
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%T Parametrized relaxation for evolution inclusions of the subdifferential type
%J Archivum mathematicum
%D 1995
%P 9-28
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a1/
%G en
%F ARM_1995_31_1_a1
Papageorgiou, Nikolaos S. Parametrized relaxation for evolution inclusions of the subdifferential type. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 9-28. http://geodesic.mathdoc.fr/item/ARM_1995_31_1_a1/

[1] Attouch, H.: Variational Convergence for Functionals and Operators. Pitman, London (1984). | MR

[2] Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin (1984). | MR

[3] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden, The Netherlands (1976). | MR | Zbl

[4] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math.90, (1988), pp. 69-86. | MR

[5] Brezis, H.: Operateurs Maximaux Monotones. North Holland, Amsterdam (1973). | Zbl

[6] Colombo, G., Fryszkowski, A., Rzezuchowski, T., Staicu, V.: Continuous selections of solution sets of Lipschitzean differential inclusions. Funkcial. Ekvac. - in press.

[7] Cornet, B.: Existence of slow solutions for a class of differential inclusions. J. Math. Anal. Appl. 96, (1983), pp. 130-147. | MR | Zbl

[8] DeBlasi, F., Myjak, J.: Continuous approximations for multifunctions. Pacific J. Math.123, (1986), pp. 9-31. | MR

[9] Diestel, J., Uhl, J.J.: Vector Measures. Math Surveys,15, AMS, Providence, RI (1977). | MR

[10] Filippov, A.F.: Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control 5, (1967), pp. 609-621. | MR

[11] Flytzanis, E., Papageorgiou, N.S.: On the existence of optimal controls for a class of nonlinear infinite dimensional systems. Math. Nachrichten 150, (1991), pp. 203-217. | MR

[12] Frankowska, H.: A priori estimates for operational differential inclusions. J. Differential Equations 84, (1990), pp. 100-128. | MR | Zbl

[13] Fryszkowski, A., Rzezuchowski, T.: Continuous version of Filippov-Wazewski relaxation theorem. J. Differential Equations, 94, (1991), pp. 254-265. | MR

[14] Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal.7, (1977), pp. 149-182. | MR

[15] Himmelberg, C., Van Vleck, F.: Lipschitzean generalized differential equations. Rend. Sem. Mat. Padova, 48, (1972), pp. 159-169. | MR

[16] Klein, E., Thompson, A.: Theory of Correspondences. Wiley Interscience, New York (1984). | MR

[17] Moreau, J.-J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations, 26, (1977), pp. 347-374. | MR | Zbl

[18] Papageorgiou, N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation. J. Multiv. Anal.17, (1985), pp. 185-207.

[19] Papageorgiou, N.S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 32, (1987), pp. 437-464. | MR | Zbl

[20] Papageorgiou, N.S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10, (1987), pp. 433-442. | MR | Zbl

[21] Papageorgiou, N.S.: A relaxation theorem for differential inclusions in Banach spaces. Tohoku Math. Journ. 39, (1987), pp. 505-517. | MR | Zbl

[22] Papageorgiou, N. S.: On the relation between relaxability and performance stability for optimal control problems governed by nonlinear evolution equations. Intern. Journ. of Systems Sci. 22, (1991), pp. 237-259. | MR

[23] Papageorgiou, N.S.: On the solution set of evolution inclusions driven by time dependent subdifferentials. Math. Japonica 37, (1992), pp. 1-13. | MR | Zbl

[24] Papageorgiou, N.S.: Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials. Math. Nacrichten 158, (1992), pp. 22-36. | MR | Zbl

[25] Papageorgiou, N.S.: Continuous dependence results for subdifferential inclusions. Zeitshrift für Analysis und ihre Anwendungen, 12 (1), (1993), pp. 137-152. | MR | Zbl

[26] Papageorgiou, N.S.: Convexity of the orientor field and the solution set of a class of evolution inclusions. Math. Slovaca 42 (1993), pp. 593-615. | MR | Zbl

[27] Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems. Lecture Notes in Math, 1459, Springer-Verlag, New York (1990). | MR | Zbl

[28] Wagner, D.: Survey of measurable selection theorems. SIAM J. Control Optim. 15, (1977), pp. 859-903. | MR | Zbl

[29] Watanabe, J.: On certain nonlinear evolution equations. J. Math. Soc. Japan 25, (1973), pp. 446-463. | MR | Zbl

[30] Yamada, Y.: On evolution equations generated by subdifferential operators. J. Fac. Sci. Univ. Tokyo 23, (1976), pp. 491-515. | MR | Zbl

[31] Yotsutani, S.: Evolution equations associated with subdifferentials. J. Math. Soc. Japan 31, (1978), pp. 623-646. | MR

[32] Zhu, Q.-J.: On the solution set of differential inclusions in Banach spaces. J. Differential Equations 93, (1991), pp. 213-237. | MR