Oscillation theorems for neutral differential equations with the quasi-derivatives
Archivum mathematicum, Tome 30 (1994) no. 4, pp. 293-300
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The authors study the n-th order nonlinear neutral differential equations with the quasi – derivatives $L_n[x(t)+(-1)^r P(t) x(g(t))]+\delta Q(t) f(x(h(t))) = 0,$ where $\ n \ge 2,\ r \in \lbrace 1,2\rbrace ,\ $ and $ \delta = \pm 1.$ There are given sufficient conditions for solutions to be either oscillatory or they converge to zero.
The authors study the n-th order nonlinear neutral differential equations with the quasi – derivatives $L_n[x(t)+(-1)^r P(t) x(g(t))]+\delta Q(t) f(x(h(t))) = 0,$ where $\ n \ge 2,\ r \in \lbrace 1,2\rbrace ,\ $ and $ \delta = \pm 1.$ There are given sufficient conditions for solutions to be either oscillatory or they converge to zero.
Classification :
34C10, 34K15, 34K25, 34K40, 34K99
Keywords: neutral differential equation; oscillatory (nonoscillatory) solution; quasi derivatives
Keywords: neutral differential equation; oscillatory (nonoscillatory) solution; quasi derivatives
@article{ARM_1994_30_4_a6,
author = {R\r{u}\v{z}i\v{c}kov\'a, M. and \v{S}p\'anikov\'a, E.},
title = {Oscillation theorems for neutral differential equations with the quasi-derivatives},
journal = {Archivum mathematicum},
pages = {293--300},
year = {1994},
volume = {30},
number = {4},
mrnumber = {1322574},
zbl = {0819.34046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a6/}
}
Růžičková, M.; Špániková, E. Oscillation theorems for neutral differential equations with the quasi-derivatives. Archivum mathematicum, Tome 30 (1994) no. 4, pp. 293-300. http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a6/