On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$
Archivum mathematicum, Tome 30 (1994) no. 4, pp. 263-270 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$.
The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$.
Classification : 11B68, 11R18, 11R20, 11R29
@article{ARM_1994_30_4_a2,
     author = {Jakubec, Stanislav},
     title = {On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$},
     journal = {Archivum mathematicum},
     pages = {263--270},
     year = {1994},
     volume = {30},
     number = {4},
     mrnumber = {1322570},
     zbl = {0818.11042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a2/}
}
TY  - JOUR
AU  - Jakubec, Stanislav
TI  - On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$
JO  - Archivum mathematicum
PY  - 1994
SP  - 263
EP  - 270
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a2/
LA  - en
ID  - ARM_1994_30_4_a2
ER  - 
%0 Journal Article
%A Jakubec, Stanislav
%T On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$
%J Archivum mathematicum
%D 1994
%P 263-270
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a2/
%G en
%F ARM_1994_30_4_a2
Jakubec, Stanislav. On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$. Archivum mathematicum, Tome 30 (1994) no. 4, pp. 263-270. http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a2/

[1] Buhler, J. P., Crandall, R. E. and Sompolski, R. W.: Irregular primes to one million. Math. Comp. 59 (1992), no. 200, 717-722. | MR

[2] Darmon, H.: Note on a polynomial of Emma Lehmer. Math. Comp. 56 (1991), no. 44, 795-800. | MR | Zbl

[3] Gras, M. N.: Sur les corps cubiques cycliques dont l’anneau des entiers est monogene. Ann. Sci. Univ. Besancon Math.(3), no. 6, 1-26. | MR | Zbl

[4] Gras, M. N.: Table numerique du nombre de classes et de unites des extensions cycliques reelles de degre 4 de $Q$. Publ. Math. Besancon, fasc. 2 (1977/1978), 1-26, 1-53. | MR

[5] Gras, M. N.: Familles d’unites dans les extensions cycliques reelles de degre 6 de $Q$. Publ. Math. Besancon (1984/1985-1985/1986). | MR

[6] Gras, M. N.: Special units in real cyclic sextic fields. Math.Comp. 48 (1987), 341-355. | MR | Zbl

[7] Jakubec, S.: The congruence for Gauss’s period. Journal of Number Theory 48 (1994), 36-45. | MR

[8] Jakubec, S.: On the Vandiver’s conjecture. Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. | MR

[9] Lazarus, A. J.: Gaussian periods and units in certain cyclic fields. Proceedings of AMS 115, 961 - 968. | MR | Zbl

[10] Lecxacheux, O.: Unites d’une famille de corps cycliques reeles de degre 6 lies a la coube modulaire $X_1(13)$. J. Number Theory 31 (1989), 54-63. | MR

[11] Lehmer, E.: Connection between Gaussian periods and cyclic units. Math. Comp. 50 (1988), 535-541. | MR | Zbl

[12] Metsankyla, T.: A class number congruence for cyclotomic fields and their subfields. Acta Arith. 23 (1973), 107-116. | MR

[13] Moser, C.: Nombre de classes d’une extension cyclique reelle de $\mathbb{Q}$, de degre 4 ou 6 et de conducteur premier. Math. Nachr. 102 (1981), 45-52. | MR

[14] Moser, C., Payan, J. J.: Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier. J.Math. Soc. Japan 33 (1981), 701-706. | MR

[15] Schoof, R., Washington, L. C.: Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comp. 50 (1988), 543-556. | MR

[16] Shanks, D.: The simplest cubic fields. Math. Comp. 28 (1974), 1137-1152. | MR | Zbl

[17] Shen, Y. Y.: Unit groups and class numbers of real cyclic fields. TAMS 326 (1991), 179-209. | MR

[18] Washington, L. C.: Introduction to Cyclotomic Fields. Springer-Verlag 83. | MR | Zbl