@article{ARM_1994_30_4_a2,
author = {Jakubec, Stanislav},
title = {On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$},
journal = {Archivum mathematicum},
pages = {263--270},
year = {1994},
volume = {30},
number = {4},
mrnumber = {1322570},
zbl = {0818.11042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a2/}
}
Jakubec, Stanislav. On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$. Archivum mathematicum, Tome 30 (1994) no. 4, pp. 263-270. http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a2/
[1] Buhler, J. P., Crandall, R. E. and Sompolski, R. W.: Irregular primes to one million. Math. Comp. 59 (1992), no. 200, 717-722. | MR
[2] Darmon, H.: Note on a polynomial of Emma Lehmer. Math. Comp. 56 (1991), no. 44, 795-800. | MR | Zbl
[3] Gras, M. N.: Sur les corps cubiques cycliques dont l’anneau des entiers est monogene. Ann. Sci. Univ. Besancon Math.(3), no. 6, 1-26. | MR | Zbl
[4] Gras, M. N.: Table numerique du nombre de classes et de unites des extensions cycliques reelles de degre 4 de $Q$. Publ. Math. Besancon, fasc. 2 (1977/1978), 1-26, 1-53. | MR
[5] Gras, M. N.: Familles d’unites dans les extensions cycliques reelles de degre 6 de $Q$. Publ. Math. Besancon (1984/1985-1985/1986). | MR
[6] Gras, M. N.: Special units in real cyclic sextic fields. Math.Comp. 48 (1987), 341-355. | MR | Zbl
[7] Jakubec, S.: The congruence for Gauss’s period. Journal of Number Theory 48 (1994), 36-45. | MR
[8] Jakubec, S.: On the Vandiver’s conjecture. Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. | MR
[9] Lazarus, A. J.: Gaussian periods and units in certain cyclic fields. Proceedings of AMS 115, 961 - 968. | MR | Zbl
[10] Lecxacheux, O.: Unites d’une famille de corps cycliques reeles de degre 6 lies a la coube modulaire $X_1(13)$. J. Number Theory 31 (1989), 54-63. | MR
[11] Lehmer, E.: Connection between Gaussian periods and cyclic units. Math. Comp. 50 (1988), 535-541. | MR | Zbl
[12] Metsankyla, T.: A class number congruence for cyclotomic fields and their subfields. Acta Arith. 23 (1973), 107-116. | MR
[13] Moser, C.: Nombre de classes d’une extension cyclique reelle de $\mathbb{Q}$, de degre 4 ou 6 et de conducteur premier. Math. Nachr. 102 (1981), 45-52. | MR
[14] Moser, C., Payan, J. J.: Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier. J.Math. Soc. Japan 33 (1981), 701-706. | MR
[15] Schoof, R., Washington, L. C.: Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comp. 50 (1988), 543-556. | MR
[16] Shanks, D.: The simplest cubic fields. Math. Comp. 28 (1974), 1137-1152. | MR | Zbl
[17] Shen, Y. Y.: Unit groups and class numbers of real cyclic fields. TAMS 326 (1991), 179-209. | MR
[18] Washington, L. C.: Introduction to Cyclotomic Fields. Springer-Verlag 83. | MR | Zbl