Keywords: oblique derivative; elliptic problem; indefinite weight; eigenvalues; principal vectors
@article{ARM_1994_30_4_a1,
author = {Faierman, M.},
title = {On an oblique derivative problem involving an indefinite weight},
journal = {Archivum mathematicum},
pages = {237--262},
year = {1994},
volume = {30},
number = {4},
mrnumber = {1322569},
zbl = {0822.35102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a1/}
}
Faierman, M. On an oblique derivative problem involving an indefinite weight. Archivum mathematicum, Tome 30 (1994) no. 4, pp. 237-262. http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a1/
[1] Adams, R. A.: Sobolev Spaces. Academic, New York (1975). | MR | Zbl
[2] Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15 (1962), 119-147. | MR | Zbl
[3] Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, N.J. (1965). | MR | Zbl
[4] Agmon, S., Douglis, A. and Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 (1959), 623-727. | MR
[5] Agranovitch, M. S., Vishik, M. I.: Elliptic problems with a parameter and parabolic problems of general type. Russian Math. Surveys 19 (1964), 53-157. | MR
[6] Beals, R.: Indefinite Sturm–Liouville problems and half–range completeness. J. Differential Equations 56 (1985), 391-407. | MR | Zbl
[7] Bers, L., Schechter, M.: Elliptic Equations. In: Partial Differential Equations, Lectures in Appl. Math.III, Interscience, New York, 1964, 131-299. | MR
[8] Bognár, J.: Indefinite Inner Product Spaces. Springer, New York, 1974. | MR
[9] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw–Hill, New York, 1955. | MR
[10] Faierman, M.: On the eigenvalues of nonselfadjoint problems involving indefinite weights. Math. Ann. 282 (1988), 369-377. | MR | Zbl
[11] Faierman, M.: Elliptic problems involving an indefinite weight. Trans. Amer. Math. Soc. 320 (1990), 253–279. | MR | Zbl
[12] Faierman, M.: Non–selfadjoint elliptic problems involving an indefinite weight. Comm. Partial Differential Equations 15 (1990), 939–982. | MR | Zbl
[13] Faierman, M.: An oblique derivative problem involving an indefinite weight. Dekker, New York, 1991, 147-154, In: Differential Equations, Lecture Notes in Pure and Appl. Math. 127. | MR | Zbl
[14] Faierman, M.: An elliptic boundary value problem in a half–space. Boll. Un. Mat. Ital. 5-B (1991), 905-937. | MR | Zbl
[15] Faierman, M.: Generalized parabolic cylinder functions. Asymptotic Anal. 5 (1992), 517-531. | MR | Zbl
[16] Faierman, M.: A priori bounds for solutions of an elliptic equation. Proc. Roy. Soc. Edinburgh (to appear). | MR | Zbl
[17] Fleckinger, J., Lapidus, M. L.: Eigenvalues of elliptic boundary value problems with an indefinite weight function. Trans. Amer. Math. Soc. 295 (1986), 305-324. | MR
[18] Fleckinger, J., Lapidus, M. L.: Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights. Arch. Rational Mech. Anal. 98 (1987), 329-356. | MR
[19] Hess, P.: On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions. Math. Ann. 270 (1985), 467-475. | MR | Zbl
[20] Hess, P.: On the asymptotic distribution of eigenvalues of some non–selfadjoint problems. Bull. London Math. Soc. 18 (1986), 181-184. | MR
[21] Hess, P.: On the spectrum of elliptic operators with respect to indefinite weights. Linear Algebra Appl. 84 (1986), 99-109. | MR | Zbl
[22] Hörmander, L.: Uniqueness theorems for second order elliptic differential equations. Comm. Partial Differential Equations 8 (1983), 21-64. | MR
[23] Kato, T.: Perturbation Theory for Linear Operators. 2nd edn., Springer, New York, 1976. | MR | Zbl
[24] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Springer, New York, 1972. | MR
[25] Markus, A. S.: Introduction to the Spectral Theory of Polynomial Operator Pencils. Amer. Math. Soc., Providence, R.I. (1988). | MR | Zbl
[26] Schechter, M.: General boundary value problems for elliptic partial differential equations. Comm. Pure Appl. Math. 12 (1959), 457-482. | MR | Zbl
[27] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. 4th edn., University Press, Cambridge, 1965. | MR