A strong relaxation theorem for maximal monotone differential inclusions with memory
Archivum mathematicum, Tome 30 (1994) no. 4, pp. 227-235 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider maximal monotone differential inclusions with memory. We establish the existence of extremal strong and then we show that they are dense in the solution set of the original equation. As an application, we derive a “bang-bang” principle for nonlinear control systems monitored by maximal monotone differential equations.
We consider maximal monotone differential inclusions with memory. We establish the existence of extremal strong and then we show that they are dense in the solution set of the original equation. As an application, we derive a “bang-bang” principle for nonlinear control systems monitored by maximal monotone differential equations.
Classification : 34A60, 34H05, 34K35, 49J24
Keywords: maximal monotone operator; differential inclusion; continuous selector; “bang-bang” principle
@article{ARM_1994_30_4_a0,
     author = {Papageorgiou, Nikolaos S.},
     title = {A strong relaxation theorem for maximal monotone differential inclusions with memory},
     journal = {Archivum mathematicum},
     pages = {227--235},
     year = {1994},
     volume = {30},
     number = {4},
     mrnumber = {1322568},
     zbl = {0817.34010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a0/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
TI  - A strong relaxation theorem for maximal monotone differential inclusions with memory
JO  - Archivum mathematicum
PY  - 1994
SP  - 227
EP  - 235
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a0/
LA  - en
ID  - ARM_1994_30_4_a0
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%T A strong relaxation theorem for maximal monotone differential inclusions with memory
%J Archivum mathematicum
%D 1994
%P 227-235
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a0/
%G en
%F ARM_1994_30_4_a0
Papageorgiou, Nikolaos S. A strong relaxation theorem for maximal monotone differential inclusions with memory. Archivum mathematicum, Tome 30 (1994) no. 4, pp. 227-235. http://geodesic.mathdoc.fr/item/ARM_1994_30_4_a0/

[1] Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer, Berlin, 1984. | MR

[2] Baras, P.: Compacité de l’ opérateur $f \rightarrow u$ solution d’une equation nonlineaire $(du/dt)+ Au \ni f^{\prime \prime }$. C.R. Acad. Sci. Paris 286 (1978), 1113 - 1116. | MR

[3] Benamara, M.: Points Extremaux, Multi-applications et Fonctionelles Intégrales. Thèse du 3ème cycle, Université de Grenoble (1975), France.

[4] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69-85. | MR

[5] Brezis, H.: Operateurs Maximaux Monotones. North Holland, Amsterdam, 1973. | Zbl

[6] Dunford, N., Schwartz, J.: Linear Operators I. Willey, New York, 1958.

[7] Henry, C.: Differential equations with discontinuous right-hand side for planning procedures. J. Economic Theory 4 (1972), 545-551. | MR

[8] Klein, E., Thompson, A.: Theory of Correspondences. Willey, New York, 1984. | MR

[9] Moreau J.-J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equations 26 (1977), 347-374. | MR

[10] Papageorgiou, N. S.: Convergence theorems for Banach space valued integrable multifunctions. Inter. J. Math. and Math. Sci. 10 (1987), 433-442. | MR | Zbl

[11] Papageorgiou, N. S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 32 (1987), 437-464. | MR | Zbl

[12] Papageorgiou, N. S.: Differential inclusions with state constraints. Proc. Edinburgh Math. Soc. 32 (1988), 81-97. | MR

[13] Papageorgiou, N. S.: Maximal monotone differential inclusions with memory. Proc. Indian Acad. Sci. 102 (1992), 59-72. | MR | Zbl

[14] Papageorgiou, N. S.: Convergence theorems for set-valued conditional expectations. Comm. Math. Univ. Carol. 34 (1) (1993), in press. | MR | Zbl

[15] Tolstonogov, A: Extreme continuous selectors for multivalued maps and “bang-bang" principle for evolution inclusion. Soviet Math. Doklady 317 (1991), 481-485. | MR

[16] Wagner, D.: Survey of measurable selection theorems. SIAM J. Control and Optim. 15 (1977), 859-903. | MR | Zbl