Natural liftings of $(0,2)$-tensor fields to the tangent bundle
Archivum mathematicum, Tome 30 (1994) no. 3, pp. 215-225 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We determine all first order natural operators transforming $(0,2)$–tensor fields on a manifold $M$ into $(0,2)$–tensor fields on $TM$.
We determine all first order natural operators transforming $(0,2)$–tensor fields on a manifold $M$ into $(0,2)$–tensor fields on $TM$.
Classification : 53A55, 53C15, 58A20
Keywords: natural operator; tensor field; complete lift; vertical lift
@article{ARM_1994_30_3_a4,
     author = {Doupovec, Miroslav},
     title = {Natural liftings of $(0,2)$-tensor fields to the tangent bundle},
     journal = {Archivum mathematicum},
     pages = {215--225},
     year = {1994},
     volume = {30},
     number = {3},
     mrnumber = {1308355},
     zbl = {0816.53007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a4/}
}
TY  - JOUR
AU  - Doupovec, Miroslav
TI  - Natural liftings of $(0,2)$-tensor fields to the tangent bundle
JO  - Archivum mathematicum
PY  - 1994
SP  - 215
EP  - 225
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a4/
LA  - en
ID  - ARM_1994_30_3_a4
ER  - 
%0 Journal Article
%A Doupovec, Miroslav
%T Natural liftings of $(0,2)$-tensor fields to the tangent bundle
%J Archivum mathematicum
%D 1994
%P 215-225
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a4/
%G en
%F ARM_1994_30_3_a4
Doupovec, Miroslav. Natural liftings of $(0,2)$-tensor fields to the tangent bundle. Archivum mathematicum, Tome 30 (1994) no. 3, pp. 215-225. http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a4/

[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^kT^*M$ and $T^*T^kM$. CRAS Paris 309 (1989), 1509–1514. | MR

[2] de León, M., Rodrigues, P.R.: Methods of Differential Geometry in Analytical Mechanics. North-Holland Mathematics Studies 158, Amsterdam, 1989. | MR

[3] Janyška, J.: Natural $2$–forms on the tangent bundle of a Riemannian manifold. to appear in Proc. of Winter School in Srní, Suppl. Rend. Circ. Matem. Palermo.

[4] Kolář, I.: Natural transformations of the second tangent functor into itself. Arch. Math. (Brno) XX (1984), 169–172. | MR

[5] Kolář, I., Radziszewski, Z.: Natural transformations of second tangent and cotangent functors. Czech. Math. J. 38(113) (1988), 274–279. | MR

[6] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. | MR

[7] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification. Differential Geometry and Its Applications, Proceedings, D. Reidel Publishing Company (1987), 149–178. | MR

[8] Modugno, M., Stefani, G.: Some results on second tangent and cotangent spaces. Quaderni dell’ Instituto di Matematica dell’ Università di Lecce Q. 16 (1978).

[9] Morimoto, A.: Liftings of tensor fields and connections to tangent bundle of higher order. Nagoya Math. J. 40 (1970), 99–120. | MR

[10] Morimoto, A.: Liftings of some types of tensor fields and connections to tangent bundles of $p^r$–velocities. Nagoya Math. J. 40 (1970), 13–31. | MR

[11] Tulczyjev, W.M.: Hamiltonian systems, Lagrangian systems and the Legendre transformation. Symp. Math. 14, 247–258, Roma 1974.

[12] Yano, K., Ishihara, S.: Tangent and cotangent bundles. Marcel Dekker Inc., New York, 1973. | MR