Characterizing tolerance trivial finite algebras
Archivum mathematicum, Tome 30 (1994) no. 3, pp. 165-169
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$ $A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$ $A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
Classification :
03E20, 08A30, 08A40, 08B05
Keywords: tolerance relation; finite algebra; lattice; tolerance trivial algebra; Mal’cev function; Pixley function; arithmetical algebra
Keywords: tolerance relation; finite algebra; lattice; tolerance trivial algebra; Mal’cev function; Pixley function; arithmetical algebra
@article{ARM_1994_30_3_a1,
author = {Chajda, Ivan},
title = {Characterizing tolerance trivial finite algebras},
journal = {Archivum mathematicum},
pages = {165--169},
year = {1994},
volume = {30},
number = {3},
mrnumber = {1308352},
zbl = {0816.08003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a1/}
}
Chajda, Ivan. Characterizing tolerance trivial finite algebras. Archivum mathematicum, Tome 30 (1994) no. 3, pp. 165-169. http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a1/