Characterizing tolerance trivial finite algebras
Archivum mathematicum, Tome 30 (1994) no. 3, pp. 165-169 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$ $A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$ $A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
Classification : 03E20, 08A30, 08A40, 08B05
Keywords: tolerance relation; finite algebra; lattice; tolerance trivial algebra; Mal’cev function; Pixley function; arithmetical algebra
@article{ARM_1994_30_3_a1,
     author = {Chajda, Ivan},
     title = {Characterizing tolerance trivial finite algebras},
     journal = {Archivum mathematicum},
     pages = {165--169},
     year = {1994},
     volume = {30},
     number = {3},
     mrnumber = {1308352},
     zbl = {0816.08003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a1/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Characterizing tolerance trivial finite algebras
JO  - Archivum mathematicum
PY  - 1994
SP  - 165
EP  - 169
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a1/
LA  - en
ID  - ARM_1994_30_3_a1
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Characterizing tolerance trivial finite algebras
%J Archivum mathematicum
%D 1994
%P 165-169
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a1/
%G en
%F ARM_1994_30_3_a1
Chajda, Ivan. Characterizing tolerance trivial finite algebras. Archivum mathematicum, Tome 30 (1994) no. 3, pp. 165-169. http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a1/

[1] Abbot, J. C.: Semi-boolean algebra. Matem. Vestnik 4 (1967), 177–198. | MR

[2] Chajda, I.: Algebraic Theory of Tolerance Relations. Publ. Palacký University Olomouc 1991 (Czech Republic). | Zbl

[3] Chajda, I.: Tolerances in permutable algebras. Czech. Math. J. 38 (1988), 218–225. | MR

[4] Chajda, I.: On the existence of non-trivial tolerances in permutable algebras. Czech. Math. J. 40 (1990), 598–600. | MR | Zbl

[5] Chajda, I.: Every at most four element algebra has a Mal’cev theory for permutability. Math. Slovaca 41 (1991), 35–39. | MR | Zbl

[6] Chajda, I., Czédli, G.: Maltsev functions on small algebras. Studia Sci. Math. Hungarica (Budapest) 28 (1993), 339–348. | MR

[7] Chajda, I., Niederle, J., Zelinka, B.: On the existence conditions for compatible tolerances. Czech. Math. J. 26 (1976), 304–311. | MR

[8] Chajda, I., Zelinka, B.: Tolerances and congruences in implication algebras. Czech. Math. J. 38 (1988), 207–217. | MR

[9] Cornish, W. H.: On Iséki’s BCK-algebras. Lectures Notes in Pure and Appl. Math. 74 (1982), New York, 101–122. | MR | Zbl

[10] Gumm, H.-P.: Is there a Mal’cev theory for single algebras?. Algebra Univ. 8 (1978), 320–329. | MR | Zbl

[11] Mal’cev, A. I: On the general theory of algebraic systems (Russian). Matem. Sbornik 35 (1954), 3–20.

[12] Pixley, A. F.: Completeness in arithmetical algebras. Algebra Univ. 2 (1972), 177–192. | MR | Zbl

[13] Pixley, A. F.: Distributivity and permutability of congruence relations in equational classes of algebras. Proc. Amer. Math. Soc. 14 (1963). | MR | Zbl

[14] Raftery, J. G., Rosenberg, I. G., Sturm, T.: Tolerance relations and BCK-algebras. Math. Japon. 36 (1991). | MR

[15] Sturm, T.: On commutative BCK-algebras. Math. Japon. 27 (1982), 197–212. | MR | Zbl

[16] Tanaka, S.: On $\wedge $-commutative algebras. Math. Semin. Notes Kobe Univ. 3 (1975), 59–64. | MR

[17] Werner, H.: A Mal’cev condition for admissible relations. Algebra Univ. 3 (1973), 263. | MR | Zbl