Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces
Archivum mathematicum, Tome 30 (1994) no. 3, pp. 145-164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove the existence of a closed neat embedding of a Hausdorff paracompact Hilbert manifold with smooth boundary into $H \times [0, + \infty)$, where $H$ is a Hilbert space, such that the normal space in each point of a certain neighbourhood of the boundary is contained in $H \times \{ 0 \}$. Then, we give a neccesary and sufficient condition that a Hausdorff paracompact topological space could admit a differentiable structure of class $\infty$ with smooth boundary.
In this paper we prove the existence of a closed neat embedding of a Hausdorff paracompact Hilbert manifold with smooth boundary into $H \times [0, + \infty)$, where $H$ is a Hilbert space, such that the normal space in each point of a certain neighbourhood of the boundary is contained in $H \times \{ 0 \}$. Then, we give a neccesary and sufficient condition that a Hausdorff paracompact topological space could admit a differentiable structure of class $\infty$ with smooth boundary.
Classification : 57R40, 58B10, 58C25
Keywords: neat embedding; Hilbert manifold; manifold with smooth boundary; normal bundle manifold; collar neighbourhood
@article{ARM_1994_30_3_a0,
     author = {Margalef-Roig, J. and Outerelo-Dom{\'\i}nguez, E.},
     title = {Embedding of {Hilbert} manifolds with smooth boundary into semispaces of {Hilbert} spaces},
     journal = {Archivum mathematicum},
     pages = {145--164},
     year = {1994},
     volume = {30},
     number = {3},
     mrnumber = {1308351},
     zbl = {0849.57026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a0/}
}
TY  - JOUR
AU  - Margalef-Roig, J.
AU  - Outerelo-Domínguez, E.
TI  - Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces
JO  - Archivum mathematicum
PY  - 1994
SP  - 145
EP  - 164
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a0/
LA  - en
ID  - ARM_1994_30_3_a0
ER  - 
%0 Journal Article
%A Margalef-Roig, J.
%A Outerelo-Domínguez, E.
%T Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces
%J Archivum mathematicum
%D 1994
%P 145-164
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a0/
%G en
%F ARM_1994_30_3_a0
Margalef-Roig, J.; Outerelo-Domínguez, E. Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces. Archivum mathematicum, Tome 30 (1994) no. 3, pp. 145-164. http://geodesic.mathdoc.fr/item/ARM_1994_30_3_a0/

[1] R. Abraham: Lectures of Smale Differential Topology. Columbia University, New York, 1962.

[2] S. Armas-Gómez J. Margalef-Roig E. Outerelo-Domínguez E. Padrón-Fernández: Embedding of an Urysohn differentiable manifold with corners in a real Banach space. Winter School of Geometry and Physics held in SRNI (January, 1991, Czechoslovak).

[3] H. Cartan: Sur les Rétractions d’une varieté. C.R. Acad. Sc. Paris, A. 303, Serie I, n. 14, 1986, p. 715. | MR | Zbl

[4] J. Eells K.D. Elworthy: Open embeddings of certain Banach manifolds. Ann. of Math. 91, 1970, 465–485. | MR

[5] R. Godement: Théorie des faisceaux. Hermann, Paris, 1958. | MR | Zbl

[6] J. Margalef-Roig E. Outerelo-Domínguez: Topología diferencial. C.S.I.C., Madrid, 1988. | MR

[7] J. Margalef-Roig E. Outerelo-Domínguez: On Retraction of Manifolds with corners. (to appear). | MR

[8] J.H. McAlpin: Infinite dimensional manifolds and Morse theory. Ph.D. Thesis, Columbia University, New York, 1965.

[9] R.E. Stong: Notes on Cobordism Theory. Princeton University Press, 1968. | MR | Zbl