Landesman-Lazer type problems at an eigenvalue of odd multiplicity
Archivum mathematicum, Tome 30 (1994) no. 2, pp. 73-84
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The aim of this paper is to establish some a priori bounds for solutions of Landesman-Lazer problem. We show the application for the solution structure of the nonlinear differential equation of the fourth order
The aim of this paper is to establish some a priori bounds for solutions of Landesman-Lazer problem. We show the application for the solution structure of the nonlinear differential equation of the fourth order
Classification :
34B15, 34B27, 34C25, 47H15, 47N20
Keywords: completely continuous mapping; linear projection; Fredholm operator of index zero; Cauchy function; Hilbert-Schmidt operator; algebraic multiplicity
Keywords: completely continuous mapping; linear projection; Fredholm operator of index zero; Cauchy function; Hilbert-Schmidt operator; algebraic multiplicity
@article{ARM_1994_30_2_a0,
author = {Pinda, \v{L}udov{\'\i}t},
title = {Landesman-Lazer type problems at an eigenvalue of odd multiplicity},
journal = {Archivum mathematicum},
pages = {73--84},
year = {1994},
volume = {30},
number = {2},
mrnumber = {1292560},
zbl = {0819.34020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_2_a0/}
}
Pinda, Ľudovít. Landesman-Lazer type problems at an eigenvalue of odd multiplicity. Archivum mathematicum, Tome 30 (1994) no. 2, pp. 73-84. http://geodesic.mathdoc.fr/item/ARM_1994_30_2_a0/
[1] Greguš, M., Švec, M., Šeda, V.: Obyčajné diferenciálne rovnice. Alfa, 1985.
[2] Hutson, V. C. L., Pym, J. S.: Applications of Functional Analysis and Operator Theory. Academie Press, London, New York, Toronto, Sydney, San Francisco, 1980. | MR
[3] Mawhin, J., Schmitt, K.: Lamdesman–Lazer type problems a an eigenvalue of odd multiplicity. Results in Mathematics 14 (1988), 138-146. | MR
[4] Pinda, L.: On a fourth order periodic boundary value problem. Arch. Math. (Brno) 30 (1994), no. 1, 1-8. | MR | Zbl
[5] Šeda, V.: Some remarks to coincidence theory. Czechoslovak Matematical Journal 38 (1988), no. 113, 554-572. | MR