Keywords: Riemannian manifolds; curvature tensor; curvature homogeneous spaces
@article{ARM_1994_30_1_a5,
author = {Kowalski, Old\v{r}ich and Pr\"ufer, Friedbert},
title = {Curvature tensors in dimension four which do not belong to any curvature homogeneous space},
journal = {Archivum mathematicum},
pages = {45--57},
year = {1994},
volume = {30},
number = {1},
mrnumber = {1282112},
zbl = {0813.53027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a5/}
}
TY - JOUR AU - Kowalski, Oldřich AU - Prüfer, Friedbert TI - Curvature tensors in dimension four which do not belong to any curvature homogeneous space JO - Archivum mathematicum PY - 1994 SP - 45 EP - 57 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a5/ LA - en ID - ARM_1994_30_1_a5 ER -
Kowalski, Oldřich; Prüfer, Friedbert. Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Archivum mathematicum, Tome 30 (1994) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a5/
[CH] Chern S.S.: On the Curvature and Characteristic Classes of a Riemannian manifold. Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126. | MR
[K1] Kowalski O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R = 0$. Preprint, 1991. | MR
[K2] Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1 = \rho _2 \ne \rho _3$. To appear in Nagoya Math. J. 132 (1993). | MR
[K3] Kowalski O.: Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Comment. Math. Univ. Carolinae, 34, 3 (1993), 451-457. | MR | Zbl
[KL] Klinger R.: A Basis that Reduces to Zero as many Curvature Components as Possible. Abh. Math. Sem. Univ. Hamburg 61 (1991), 243-248. | MR | Zbl
[K-N] Kobayashi S., Nomizu K.: Foundations of Differential geometry I. Interscience Publishers, New York 1963. | MR | Zbl
[K-P] Kowalski O., Prüfer F.: On Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Preprint, 1993. | MR
[K-T-V1] Kowalski O., Tricerri F., Vanhecke L.: New examples of non-homogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space. C. R. Acad. Sci. Paris, Sér. I, 311 (1990), 355-360 | MR | Zbl
[K-T-V2] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl. 71 (1992), 471 - 501. | MR | Zbl
[K-T-V3] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous spaces with a solvable Lie group as a homogeneous model. J. Math. Soc. Japan, 44 (1992), 461-484. | MR
[K-V] Kowalski O., Vanhecke L.: Ball-Homogeneous and Disk-Homogeneous Riemannian manifolds. Math. Z. 180 (1982), 429-444. | MR | Zbl
[N-T] Nicolodi L., Tricerri F.: On two Theorems of I.M. Singer about Homogeneous Spaces. Ann. Global Anal. Geom. 8 (1990), 193-209. | MR | Zbl
[M] Milnor J.: Curvatures of left invariant metrics on Lie groups. Adv. in Math. 21 (1976), 293-329. | MR | Zbl
[SE] Sekigawa K.: On some 3-dimensional Riemannian manifolds. Hokkaido Math. J. 2 (1973), 259-270. | MR | Zbl
[SI] Singer I.M.: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697. | MR | Zbl
[SI-TH] Singer I.M., Thorpe J.A.: The curvature of 4-dimensional Einstein spaces. In: Global Analysis (Papers in honor of K. Kodaira, pp. 355-366) Princeton, New Jersey, Princeton University Press 1969. | MR | Zbl
[S-T] Spiro A., Tricerri F.: 3-dimensional Riemannian metrics with prescribed Ricci principal curvatures. Preprint, 1993. | MR
[T] Tsukada T.: Curvature homogeneous hypersurfaces immersed in a real space form. Tôhoku Math. J. 40 (1988), 221-244. | MR | Zbl
[T-V] Tricerri F., Vanhecke L.: Curvature tensors on almost Hermitian manifolds. Trans. Amer. Math. Soc. 267 (1981), 365-398. | MR | Zbl
[YA] Yamato K.: A characterization of locally homogeneous Riemannian manifolds of dimension three. Nagoya Math. J. 123 (1991), 77-90. | MR