Curvature tensors in dimension four which do not belong to any curvature homogeneous space
Archivum mathematicum, Tome 30 (1994) no. 1, pp. 45-57 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A six-parameter family is constructed of (algebraic) Riemannian curvature tensors in dimension four which do not belong to any curvature homogeneous space. Also a general method is given for a possible extension of this result.
A six-parameter family is constructed of (algebraic) Riemannian curvature tensors in dimension four which do not belong to any curvature homogeneous space. Also a general method is given for a possible extension of this result.
Classification : 53C20, 53C21, 53C30
Keywords: Riemannian manifolds; curvature tensor; curvature homogeneous spaces
@article{ARM_1994_30_1_a5,
     author = {Kowalski, Old\v{r}ich and Pr\"ufer, Friedbert},
     title = {Curvature tensors in dimension four which do not belong to any curvature homogeneous space},
     journal = {Archivum mathematicum},
     pages = {45--57},
     year = {1994},
     volume = {30},
     number = {1},
     mrnumber = {1282112},
     zbl = {0813.53027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a5/}
}
TY  - JOUR
AU  - Kowalski, Oldřich
AU  - Prüfer, Friedbert
TI  - Curvature tensors in dimension four which do not belong to any curvature homogeneous space
JO  - Archivum mathematicum
PY  - 1994
SP  - 45
EP  - 57
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a5/
LA  - en
ID  - ARM_1994_30_1_a5
ER  - 
%0 Journal Article
%A Kowalski, Oldřich
%A Prüfer, Friedbert
%T Curvature tensors in dimension four which do not belong to any curvature homogeneous space
%J Archivum mathematicum
%D 1994
%P 45-57
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a5/
%G en
%F ARM_1994_30_1_a5
Kowalski, Oldřich; Prüfer, Friedbert. Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Archivum mathematicum, Tome 30 (1994) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a5/

[CH] Chern S.S.: On the Curvature and Characteristic Classes of a Riemannian manifold. Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126. | MR

[K1] Kowalski O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R = 0$. Preprint, 1991. | MR

[K2] Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1 = \rho _2 \ne \rho _3$. To appear in Nagoya Math. J. 132 (1993). | MR

[K3] Kowalski O.: Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Comment. Math. Univ. Carolinae, 34, 3 (1993), 451-457. | MR | Zbl

[KL] Klinger R.: A Basis that Reduces to Zero as many Curvature Components as Possible. Abh. Math. Sem. Univ. Hamburg 61 (1991), 243-248. | MR | Zbl

[K-N] Kobayashi S., Nomizu K.: Foundations of Differential geometry I. Interscience Publishers, New York 1963. | MR | Zbl

[K-P] Kowalski O., Prüfer F.: On Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Preprint, 1993. | MR

[K-T-V1] Kowalski O., Tricerri F., Vanhecke L.: New examples of non-homogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space. C. R. Acad. Sci. Paris, Sér. I, 311 (1990), 355-360 | MR | Zbl

[K-T-V2] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl. 71 (1992), 471 - 501. | MR | Zbl

[K-T-V3] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous spaces with a solvable Lie group as a homogeneous model. J. Math. Soc. Japan, 44 (1992), 461-484. | MR

[K-V] Kowalski O., Vanhecke L.: Ball-Homogeneous and Disk-Homogeneous Riemannian manifolds. Math. Z. 180 (1982), 429-444. | MR | Zbl

[N-T] Nicolodi L., Tricerri F.: On two Theorems of I.M. Singer about Homogeneous Spaces. Ann. Global Anal. Geom. 8 (1990), 193-209. | MR | Zbl

[M] Milnor J.: Curvatures of left invariant metrics on Lie groups. Adv. in Math. 21 (1976), 293-329. | MR | Zbl

[SE] Sekigawa K.: On some 3-dimensional Riemannian manifolds. Hokkaido Math. J. 2 (1973), 259-270. | MR | Zbl

[SI] Singer I.M.: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697. | MR | Zbl

[SI-TH] Singer I.M., Thorpe J.A.: The curvature of 4-dimensional Einstein spaces. In: Global Analysis (Papers in honor of K. Kodaira, pp. 355-366) Princeton, New Jersey, Princeton University Press 1969. | MR | Zbl

[S-T] Spiro A., Tricerri F.: 3-dimensional Riemannian metrics with prescribed Ricci principal curvatures. Preprint, 1993. | MR

[T] Tsukada T.: Curvature homogeneous hypersurfaces immersed in a real space form. Tôhoku Math. J. 40 (1988), 221-244. | MR | Zbl

[T-V] Tricerri F., Vanhecke L.: Curvature tensors on almost Hermitian manifolds. Trans. Amer. Math. Soc. 267 (1981), 365-398. | MR | Zbl

[YA] Yamato K.: A characterization of locally homogeneous Riemannian manifolds of dimension three. Nagoya Math. J. 123 (1991), 77-90. | MR