Weighted estimates for the Hankel-, $\underline{K}$- and $Y$- transformations
Archivum mathematicum, Tome 30 (1994) no. 1, pp. 29-43 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give conditions on pairs of non-negative functions $u$ and $v$ which are sufficient that, for $01$ \[ \left[ \int _0^\infty |u(x)(Tf)(x)|^q\, dx\right]^{\frac{1}{q}} \le C\left[ \int _0^\infty |v(x)f(x)|^p\, dx\right]^{\frac{1}{p}}\,, \] where $T$ is the Hankel-, K-, or the Y-transformations.
We give conditions on pairs of non-negative functions $u$ and $v$ which are sufficient that, for $0$, $p>1$ \[ \left[ \int _0^\infty |u(x)(Tf)(x)|^q\, dx\right]^{\frac{1}{q}} \le C\left[ \int _0^\infty |v(x)f(x)|^p\, dx\right]^{\frac{1}{p}}\,, \] where $T$ is the Hankel-, K-, or the Y-transformations.
Classification : 26D10, 26D15, 42B10, 44A15
Keywords: weighted inequalities; Hankel; K- and Y-transformations
@article{ARM_1994_30_1_a4,
     author = {Emara, Salah A. A.},
     title = {Weighted estimates for the {Hankel-,} $\underline{K}$- and $Y$- transformations},
     journal = {Archivum mathematicum},
     pages = {29--43},
     year = {1994},
     volume = {30},
     number = {1},
     mrnumber = {1282111},
     zbl = {0808.44008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a4/}
}
TY  - JOUR
AU  - Emara, Salah A. A.
TI  - Weighted estimates for the Hankel-, $\underline{K}$- and $Y$- transformations
JO  - Archivum mathematicum
PY  - 1994
SP  - 29
EP  - 43
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a4/
LA  - en
ID  - ARM_1994_30_1_a4
ER  - 
%0 Journal Article
%A Emara, Salah A. A.
%T Weighted estimates for the Hankel-, $\underline{K}$- and $Y$- transformations
%J Archivum mathematicum
%D 1994
%P 29-43
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a4/
%G en
%F ARM_1994_30_1_a4
Emara, Salah A. A. Weighted estimates for the Hankel-, $\underline{K}$- and $Y$- transformations. Archivum mathematicum, Tome 30 (1994) no. 1, pp. 29-43. http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a4/

[1] Benedetto, J. J., Heinig, H. P., Johnson, R.: Weighted Hardy spaces and the Laplace transform II. Math. Nachr. 132 (1987), 29-55. | MR

[2] Emara, S. A., Heinig, H. P.: Weighted norm inequalities for the Hankel- and K̲-transformations. Proc. Roy. Soc. Edinburgh Sect A 103 (1986), 325-333. | MR

[3] Emara, S.: A class of weighted inequalities. Harmonic Analysis, ICM-90 Satelite conf. Proc., Japan 1990, Springer-Verlag (1991). | MR | Zbl

[4] Erdelyi, A.(Ed.): Tables of integral transforms. vol. II, McGraw Hill, New York, 1954. | MR | Zbl

[5] Gradshteyn, I. G., Ryzhik, I. M.: Tables of integrals, series and products. New York, Academic Press, 1980.

[6] Gustavsson, J.: A function parameter in connection with interpolation of Banach spaces. Math. Scand. 42 (1978), 289-305. | MR | Zbl

[7] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. Cambridge Univ. Press, 1967.

[8] Heinig, H.P.: Interpolation of quasi-normed spaces involving weights. Canad. Math. Soc. Conf. Proc. 1 (1981), 245-267. | MR | Zbl

[9] Heinig, H. P.: Weighted norm inequalities for classes of operators. Indiana Univ. Math. J. 33 (1984), 573-582. | MR | Zbl

[10] Heywood, P., Rooney, P. G.: A weighted norm inequality for the Hankel transformation. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 45-50. | MR

[11] Johnson, R.: Temperatures, Riesz potentials and Lipschitz spaces of Herz. Proc. London Math. Soc. (3) 27 (1973), 290-316. | MR

[12] Kalugina, T. F.: Interpolation of Banach spaces with functional parameter. The Reiteration theorem. Vestnik Moskovskoyo University, Ser. 1, Math. Mech. 30(6) (1975) (Engl. Transl. Moscow Univ. Math. Bull. 30 (6) (1975), 108-116). | MR

[13] Maz’ja, V. G.: Sobolev spaces. Springer-Verlag, Berlin, 1985. | MR | Zbl

[14] Sinnamon. G.: A weighted gradient inequality. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 329-335. | MR | Zbl