Characterization of distributive sets by generalized annihilators
Archivum mathematicum, Tome 30 (1994) no. 1, pp. 25-27 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Distributive ordered sets are characterized by so called generalized annihilators.
Distributive ordered sets are characterized by so called generalized annihilators.
Classification : 06A06
Keywords: annihilator; generalized annihilators; ideal; filter
@article{ARM_1994_30_1_a3,
     author = {Hala\v{s}, Radom{\'\i}r},
     title = {Characterization of distributive sets by generalized annihilators},
     journal = {Archivum mathematicum},
     pages = {25--27},
     year = {1994},
     volume = {30},
     number = {1},
     mrnumber = {1282110},
     zbl = {0805.06001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a3/}
}
TY  - JOUR
AU  - Halaš, Radomír
TI  - Characterization of distributive sets by generalized annihilators
JO  - Archivum mathematicum
PY  - 1994
SP  - 25
EP  - 27
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a3/
LA  - en
ID  - ARM_1994_30_1_a3
ER  - 
%0 Journal Article
%A Halaš, Radomír
%T Characterization of distributive sets by generalized annihilators
%J Archivum mathematicum
%D 1994
%P 25-27
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a3/
%G en
%F ARM_1994_30_1_a3
Halaš, Radomír. Characterization of distributive sets by generalized annihilators. Archivum mathematicum, Tome 30 (1994) no. 1, pp. 25-27. http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a3/

[1] Mandelker, M.: Relative annihilators in lattices. Duke Math. J. 40 (1970), 377-386. | MR | Zbl

[2] Davey, B.: Some annihilator conditions on distributive lattices. Alg. Universalis 4 (1974), 316-322. | MR | Zbl

[3] Davey, B., Nieminen, J.: Annihilators in modular lattices. preprint. | MR

[4] Rachůnek, J.: Translations des ensembles ordonnès. Math. Slovaca 31 (1981), 337-340. | MR

[5] Rachůnek, J., Chajda, I.: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407-423. | MR