On a fourth order periodic boundary value problem
Archivum mathematicum, Tome 30 (1994) no. 1, pp. 1-8 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Existence and uniqueness of the solution to a fourth order nonlinear vector periodic boundary value problem is proved by using the estimates for derivatives of the Green function for the corresponding homogenous scalar problem
Existence and uniqueness of the solution to a fourth order nonlinear vector periodic boundary value problem is proved by using the estimates for derivatives of the Green function for the corresponding homogenous scalar problem
Classification : 34B10, 34B15, 34B27, 34C25, 47N20
Keywords: symmetric operator; Green function; generalized Banach space; Lipschitz condition; eigenvalue
@article{ARM_1994_30_1_a0,
     author = {Pinda, \v{L}udov{\'\i}t},
     title = {On a fourth order periodic boundary value problem},
     journal = {Archivum mathematicum},
     pages = {1--8},
     year = {1994},
     volume = {30},
     number = {1},
     mrnumber = {1282107},
     zbl = {0808.34020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a0/}
}
TY  - JOUR
AU  - Pinda, Ľudovít
TI  - On a fourth order periodic boundary value problem
JO  - Archivum mathematicum
PY  - 1994
SP  - 1
EP  - 8
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a0/
LA  - en
ID  - ARM_1994_30_1_a0
ER  - 
%0 Journal Article
%A Pinda, Ľudovít
%T On a fourth order periodic boundary value problem
%J Archivum mathematicum
%D 1994
%P 1-8
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a0/
%G en
%F ARM_1994_30_1_a0
Pinda, Ľudovít. On a fourth order periodic boundary value problem. Archivum mathematicum, Tome 30 (1994) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/ARM_1994_30_1_a0/

[1] Greguš, M., Švec, M., Šeda, V.: Obyčajné diferenciálne rovnice. Alfa, 1985.

[2] Šeda, V.: On a vector multipoint boundary value problem. Archivum Mathematicum Brno 22 (1986), no. 2, 75–92. | MR

[3] Zajacová, Ĺ.: The solution of the two-point boundary value problem for a nonlinear differential equation of the third order. Math. Slovaca 36 (1986), no. 4, 345–357. | MR