On the equivalence of variational problems. II
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 197-220
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Elements of general theory of infinitely prolonged underdetermined systems of ordinary differential equations are outlined and applied to the equivalence of one-dimensional constrained variational integrals. The relevant infinite-dimensional variant of Cartan’s moving frame method expressed in quite elementary terms proves to be surprisingly efficient in solution of particular equivalence problems, however, most of the principal questions of the general theory remains unanswered. New concepts of Poincaré-Cartan form and Euler-Lagrange system without Lagrange multiplies appearing as a mere by-product seem to be of independent interest in connection with the 23rd Hilbert problem.
Elements of general theory of infinitely prolonged underdetermined systems of ordinary differential equations are outlined and applied to the equivalence of one-dimensional constrained variational integrals. The relevant infinite-dimensional variant of Cartan’s moving frame method expressed in quite elementary terms proves to be surprisingly efficient in solution of particular equivalence problems, however, most of the principal questions of the general theory remains unanswered. New concepts of Poincaré-Cartan form and Euler-Lagrange system without Lagrange multiplies appearing as a mere by-product seem to be of independent interest in connection with the 23rd Hilbert problem.
Classification : 49J40, 49L99, 58A17, 58E30, 58H05, 70H35
Keywords: constrained variational integral; equivalence problem; diffiety; Poincaré-Cartan form; Frenet coframe
@article{ARM_1993_29_3-4_a9,
     author = {Chrastina, Jan},
     title = {On the equivalence of variational problems. {II}},
     journal = {Archivum mathematicum},
     pages = {197--220},
     year = {1993},
     volume = {29},
     number = {3-4},
     mrnumber = {1263122},
     zbl = {0821.49009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a9/}
}
TY  - JOUR
AU  - Chrastina, Jan
TI  - On the equivalence of variational problems. II
JO  - Archivum mathematicum
PY  - 1993
SP  - 197
EP  - 220
VL  - 29
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a9/
LA  - en
ID  - ARM_1993_29_3-4_a9
ER  - 
%0 Journal Article
%A Chrastina, Jan
%T On the equivalence of variational problems. II
%J Archivum mathematicum
%D 1993
%P 197-220
%V 29
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a9/
%G en
%F ARM_1993_29_3-4_a9
Chrastina, Jan. On the equivalence of variational problems. II. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 197-220. http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a9/

[1] Anderson, R. S., Ibragimov, N. H.: Lie-Bäcklund transformations in applications. SIAM Philadelphia 1979. | MR

[2] Cartan, E.: Les systèmes de Pfaff a cinq variables. Oeuvres complétes II 2, Paris 1955.

[3] Chrastina, J.: On the equivalence of variational problems I. (Journal of Differential Equations, Vol. 98 (1992), 76-90. | MR | Zbl

[4] Chrastina, J.: From elementary algebra to Bäcklund transformations. Czechoslovak Math. Journal, 40 (115) 1990, Praha. | MR | Zbl

[5] Chrastina, J.: Solution of the inverse problem of the calculus of variations. (to appear). | MR | Zbl

[6] Gardner, R. B.: The method of equivalence and its applications. CBMS-NSF regional conference series in appl. mathematics 58, Philadelphia 1989. | MR | Zbl

[7] Griffiths, P. A.: Exterior differential systems and the calculus of variations. Progress in Mathematics 25, Birkhäuser 1983. | MR | Zbl

[8] Mathematical developments arising from Hilbert problems. Proc. Symp. in Pure and Appl. Math. AMS, Vol. XXVII, 1976. | Zbl

[9] Kamran, N.: On the equivalence problem of Élie Cartan. Académie Royale de Belgique, Memoire de la classe de sciences, Collection in $8^0$-$2^{\text{e}}$ série, T. XLV - Fascicule 7 et dernier - 1989.

[10] Tzujishita, T.: On variational bicomplexes associated to differential equations. Osaka J. Math. 19 (1982), 311-363.