Oscillatory and asymptotic behaviour of solutions of advanced functional equations
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 161-166 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we compare the asymptotic behaviour of the advanced functional equation \[ L_nu(t)-F\big (t,u[g(t)]\big )= 0\] with the asymptotic behaviour of the set of ordinary functional equations \[ \alpha _iu(t)-F\big (t,u(t)\big )= 0. \] On the basis of this comparison principle the sufficient conditions for property (B) of equation (*) are deduced.
In this paper we compare the asymptotic behaviour of the advanced functional equation \[ L_nu(t)-F\big (t,u[g(t)]\big )= 0\] with the asymptotic behaviour of the set of ordinary functional equations \[ \alpha _iu(t)-F\big (t,u(t)\big )= 0. \] On the basis of this comparison principle the sufficient conditions for property (B) of equation (*) are deduced.
Classification : 34C10, 34K15, 34K99
Keywords: comparison theorem; advanced argument; property (B)
@article{ARM_1993_29_3-4_a4,
     author = {D\v{z}urina, Jozef},
     title = {Oscillatory and asymptotic behaviour of solutions of advanced functional equations},
     journal = {Archivum mathematicum},
     pages = {161--166},
     year = {1993},
     volume = {29},
     number = {3-4},
     mrnumber = {1263117},
     zbl = {0811.34052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a4/}
}
TY  - JOUR
AU  - Džurina, Jozef
TI  - Oscillatory and asymptotic behaviour of solutions of advanced functional equations
JO  - Archivum mathematicum
PY  - 1993
SP  - 161
EP  - 166
VL  - 29
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a4/
LA  - en
ID  - ARM_1993_29_3-4_a4
ER  - 
%0 Journal Article
%A Džurina, Jozef
%T Oscillatory and asymptotic behaviour of solutions of advanced functional equations
%J Archivum mathematicum
%D 1993
%P 161-166
%V 29
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a4/
%G en
%F ARM_1993_29_3-4_a4
Džurina, Jozef. Oscillatory and asymptotic behaviour of solutions of advanced functional equations. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 161-166. http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a4/

[1] Foster, K. E., Grimmer, R. C.: Nonoscillatory solutions of higher order differential equations. J. Math. Anal. Appl. 71 (1979), 1-17. | MR

[2] Hille, E.: Non-oscillation theorems. Trans. Amer. Math. Soc. 64 (1948), 234-258. | MR | Zbl

[3] Kiguradze, I. T.: On the oscillation of solutions of the equation $d^mu/dt^m + a(t)|u|^n sign\,u = 0$. Mat. Sb. 65 (1964), 172-187. (Russian) | MR | Zbl

[4] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509-532. | MR

[5] Kusano, T., Naito, M., Tanaka, K.: Oscillatory and asymptotic behaviour of solutions of a class of linear ordinary differential equations. Proc. Roy. Soc. Edinburg 90 (1981), 25-40. | MR

[6] Trench, W. F.: Canonicals form and principal systems for general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319-327. | MR