Pseudocomplemented ordered sets
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 153-160
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The aim of this paper is to transfer the concept of pseudocomplement from lattices to ordered sets and to prove some basic results holding for pseudocomplemented ordered sets.
The aim of this paper is to transfer the concept of pseudocomplement from lattices to ordered sets and to prove some basic results holding for pseudocomplemented ordered sets.
Classification :
06A06, 06A99
Keywords: pseudocomplemented; (w)- distributive; modular; complemented ordered set
Keywords: pseudocomplemented; (w)- distributive; modular; complemented ordered set
@article{ARM_1993_29_3-4_a3,
author = {Hala\v{s}, Radom{\'\i}r},
title = {Pseudocomplemented ordered sets},
journal = {Archivum mathematicum},
pages = {153--160},
year = {1993},
volume = {29},
number = {3-4},
mrnumber = {1263116},
zbl = {0801.06007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a3/}
}
Halaš, Radomír. Pseudocomplemented ordered sets. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 153-160. http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a3/
[1] Katriňák, T.: Pseudokomplementäre Halbverbände. Mat. čas. SAV 18, 121-143. | MR
[2] Rachůnek, J., Chajda, I.: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407-423. | MR
[3] Chajda, I.: Complemented ordered sets. Arch. Math. (Brno) 28 (1992), 25-34. | MR | Zbl
[4] Rachůnek, J., Larmerová, J.: Translations of modular and distributive ordered sets. Acta Univ. Palacký (Olomouc) 91 (1988), 13-23.
[5] Grätzer, G.: General lattice theory. Moscow, 1982.