Pseudocomplemented ordered sets
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 153-160 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to transfer the concept of pseudocomplement from lattices to ordered sets and to prove some basic results holding for pseudocomplemented ordered sets.
The aim of this paper is to transfer the concept of pseudocomplement from lattices to ordered sets and to prove some basic results holding for pseudocomplemented ordered sets.
Classification : 06A06, 06A99
Keywords: pseudocomplemented; (w)- distributive; modular; complemented ordered set
@article{ARM_1993_29_3-4_a3,
     author = {Hala\v{s}, Radom{\'\i}r},
     title = {Pseudocomplemented ordered sets},
     journal = {Archivum mathematicum},
     pages = {153--160},
     year = {1993},
     volume = {29},
     number = {3-4},
     mrnumber = {1263116},
     zbl = {0801.06007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a3/}
}
TY  - JOUR
AU  - Halaš, Radomír
TI  - Pseudocomplemented ordered sets
JO  - Archivum mathematicum
PY  - 1993
SP  - 153
EP  - 160
VL  - 29
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a3/
LA  - en
ID  - ARM_1993_29_3-4_a3
ER  - 
%0 Journal Article
%A Halaš, Radomír
%T Pseudocomplemented ordered sets
%J Archivum mathematicum
%D 1993
%P 153-160
%V 29
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a3/
%G en
%F ARM_1993_29_3-4_a3
Halaš, Radomír. Pseudocomplemented ordered sets. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 153-160. http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a3/

[1] Katriňák, T.: Pseudokomplementäre Halbverbände. Mat. čas. SAV 18, 121-143. | MR

[2] Rachůnek, J., Chajda, I.: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407-423. | MR

[3] Chajda, I.: Complemented ordered sets. Arch. Math. (Brno) 28 (1992), 25-34. | MR | Zbl

[4] Rachůnek, J., Larmerová, J.: Translations of modular and distributive ordered sets. Acta Univ. Palacký (Olomouc) 91 (1988), 13-23.

[5] Grätzer, G.: General lattice theory. Moscow, 1982.