Einstein-like semi-symmetric spaces
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 235-240
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

One proves that semi-symmetric spaces with a Codazzi or Killing Ricci tensor are locally symmetric. Some applications of this result are given.
One proves that semi-symmetric spaces with a Codazzi or Killing Ricci tensor are locally symmetric. Some applications of this result are given.
Classification : 53C25, 53C35
Keywords: semi-symmetric spaces; Killing and Codazzi Ricci tensor; locally symmetric spaces; spaces with volume-preserving geodesic symmetries; C-spaces; Osserman spaces
@article{ARM_1993_29_3-4_a12,
     author = {Boeckx, E.},
     title = {Einstein-like semi-symmetric spaces},
     journal = {Archivum mathematicum},
     pages = {235--240},
     year = {1993},
     volume = {29},
     number = {3-4},
     mrnumber = {1263125},
     zbl = {0807.53041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a12/}
}
TY  - JOUR
AU  - Boeckx, E.
TI  - Einstein-like semi-symmetric spaces
JO  - Archivum mathematicum
PY  - 1993
SP  - 235
EP  - 240
VL  - 29
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a12/
LA  - en
ID  - ARM_1993_29_3-4_a12
ER  - 
%0 Journal Article
%A Boeckx, E.
%T Einstein-like semi-symmetric spaces
%J Archivum mathematicum
%D 1993
%P 235-240
%V 29
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a12/
%G en
%F ARM_1993_29_3-4_a12
Boeckx, E. Einstein-like semi-symmetric spaces. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 235-240. http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a12/

[BPV] Berndt, J., Prüfer, F., Vanhecke, L.: Symmetric-like Riemannian manifolds and geodesic symmetries. preprint. | MR

[BV] Berndt, J., Vanhecke, L.: Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80. | MR

[B] Besse, A. L.: Einstein manifolds. Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. | MR | Zbl

[Bo] Boeckx, E.: Asymptotically foliated semi-symmetric spaces. in preparation. | Zbl

[BKV] Boeckx, E., Kowalski, O., Vanhecke, L.: Non-homogeneous relatives of symmetric spaces. Diff. Geom. Appl. (to appear).

[Ca] Cartan, E.: Leçons sur la géométrie des espaces de Riemann. 2nd edition, Paris, 1946. | MR | Zbl

[Ch] Cho, J. T.: Natural generalizations of locally symmetric spaces. Indian J. Pure Appl. Math. (to appear). | MR | Zbl

[D’AN] D’Atri, J. E., Nickerson, H. K.: Divergence-preserving geodesic symmetries. J. Diff. Geom. 3 (1969), 467-476. | MR

[GSV] Gilkey, P., Swann, A., Vanhecke, L.: Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. preprint. | MR

[G] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259-280. | MR | Zbl

[KN] Kobayashi, S., Nomizu, K.: Foundations of differential geometry I, II. Interscience Publishers, New York, 1963, 1969. | MR

[K1] Kowalski, O.: Spaces with volume-preserving geodesic symmetries and related classes of Riemannian manifolds. Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale Settembre (1983), 131–158. | MR

[K2] Kowalski, O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $\scriptstyle R(X,Y)\cdot R=0$. preprint. | MR

[O] R. Osserman: Curvature in the eighties. Amer. Math. Monthly 97 (1990), 731-756. | MR | Zbl

[S] Sinjukov, N. S.: Geodesic maps on Riemannian spaces. (Russian), Publishing House “Nauka" Moscow, 1979. | MR

[Sz1] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $\scriptstyle R(X,Y)\cdot R=0$, I,Local version. J. Diff. Geom. 17 (1982), 531-582. | MR

[Sz2] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $\scriptstyle R(X,Y)\cdot R=0$, II, Global versions. Geom. Dedicata 19 (1985), 65-108. | MR

[V1] Vanhecke, L.: Some solved and unsolved problems about harmonic and commutative spaces. Bull. Soc. Math. Belg., Sér. B 34 (1982), 1-24. | MR | Zbl

[V2] Vanhecke, L.: Geometry in normal and tubular neighborhoods. Lecture Notes, Proc. Workshop on Differential Geometry and Topology, Cala Gonone (Sardinia), Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al Vol. 58 (1988), 73-176. | MR