On transformations of functional-differential equations
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 227-234
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper contains applications of Schrőder’s equation to differential equations with a deviating argument. There are derived conditions under which a considered equation with a deviating argument intersecting the identity $y=x$ can be transformed into an equation with a deviation of the form $\tau (x)=\lambda x$. Moreover, if the investigated equation is linear and homogeneous, we introduce a special form for such an equation. This special form may serve as a canonical form suitable for the investigation of oscillatory and asymptotic properties of the considered equation.
The paper contains applications of Schrőder’s equation to differential equations with a deviating argument. There are derived conditions under which a considered equation with a deviating argument intersecting the identity $y=x$ can be transformed into an equation with a deviation of the form $\tau (x)=\lambda x$. Moreover, if the investigated equation is linear and homogeneous, we introduce a special form for such an equation. This special form may serve as a canonical form suitable for the investigation of oscillatory and asymptotic properties of the considered equation.
Classification : 34K05, 34K99
Keywords: Functional-differential equation; singular case; transformation; canonical form
@article{ARM_1993_29_3-4_a11,
     author = {\v{C}erm\'ak, Jan},
     title = {On transformations of functional-differential equations},
     journal = {Archivum mathematicum},
     pages = {227--234},
     year = {1993},
     volume = {29},
     number = {3-4},
     mrnumber = {1263124},
     zbl = {0802.34079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a11/}
}
TY  - JOUR
AU  - Čermák, Jan
TI  - On transformations of functional-differential equations
JO  - Archivum mathematicum
PY  - 1993
SP  - 227
EP  - 234
VL  - 29
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a11/
LA  - en
ID  - ARM_1993_29_3-4_a11
ER  - 
%0 Journal Article
%A Čermák, Jan
%T On transformations of functional-differential equations
%J Archivum mathematicum
%D 1993
%P 227-234
%V 29
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a11/
%G en
%F ARM_1993_29_3-4_a11
Čermák, Jan. On transformations of functional-differential equations. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 227-234. http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a11/

[1] Eĺsgolc, L. E.: Vvedenije v teoriju differencialnych uravnenij s otklonjajuščimsa argumentom. Nauka, Moscow, 1964. (Russian) | MR

[2] Heard, M. L.: Asymptotic behavior of solutions of the functional differential equation $x^{\prime }(t)=ax(t)+bx(t^{\alpha }), \alpha >1$. J.Math.Anal.Appl. 44 (1973), 745–757. | MR | Zbl

[3] Kato, T., McLeod, J. B.: The functional-differential equation $y^{\prime }(x)=ay(\lambda x)+by(x)$. Bull. Amer. Math. Soc. 77 (1971), 891–937. | MR

[4] Kuczma, M.: Functional Equations in a Single Variable. Polish Scient.Publ., Warszawa, 1968. | MR | Zbl

[5] Lade, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1983.

[6] Lim, E.-B.: Asymptotic behavior of solutions of the functional differential equation $x^{\prime }(t)=Ax(\lambda t)+Bx(t), \lambda >0$. J.Math.Anal.Appl. 55 (1976), 794–806. | MR | Zbl

[7] Neuman, F.: On transformations of differential equations and systems with deviating argument. Czechoslovak Math.J. 31(106) (1981), 87-90. | MR | Zbl

[8] Neuman, F.: Transformation and canonical forms of functional-differential equation. Proc. Roy.Soc.Edinburgh 115A (1990), 349-357. | MR

[9] Pandofi, L.: Some observations on the asymptotic behaviors of the solutions of the equation $x^{\prime }(t)=A(t)x(\lambda t)+B(t)x(t), \lambda >0$. J.Math.Anal.Appl. 67 (1979), 483–489. | MR

[10] Szekeres, G.: Regular iteration of real and complex functions. Acta Math. 100 (1958), 203–258. | MR | Zbl

[11] Tryhuk, V.: The most general transformation of homogeneous retarded linear differential equations of the $n$-th order. Math.Slovaka 33 (1983), 15–21. | MR | Zbl