$(L,\varphi)$-representations of algebras
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 135-143 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce the concept of an $(L, \varphi )$-representation of an algebra $A$ which is a common generalization of subdirect, full subdirect and weak direct representation of $A$. Here we characterize such representations in terms of congruence relations.
In this paper we introduce the concept of an $(L, \varphi )$-representation of an algebra $A$ which is a common generalization of subdirect, full subdirect and weak direct representation of $A$. Here we characterize such representations in terms of congruence relations.
Classification : 08A05, 08A30, 08B26
Keywords: finitely restricted subdirect product; full subdirect product; weak direct product; congruence lattice; distributivity
@article{ARM_1993_29_3-4_a1,
     author = {Walendziak, Andrzej},
     title = {$(L,\varphi)$-representations of algebras},
     journal = {Archivum mathematicum},
     pages = {135--143},
     year = {1993},
     volume = {29},
     number = {3-4},
     mrnumber = {1263114},
     zbl = {0796.08002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a1/}
}
TY  - JOUR
AU  - Walendziak, Andrzej
TI  - $(L,\varphi)$-representations of algebras
JO  - Archivum mathematicum
PY  - 1993
SP  - 135
EP  - 143
VL  - 29
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a1/
LA  - en
ID  - ARM_1993_29_3-4_a1
ER  - 
%0 Journal Article
%A Walendziak, Andrzej
%T $(L,\varphi)$-representations of algebras
%J Archivum mathematicum
%D 1993
%P 135-143
%V 29
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a1/
%G en
%F ARM_1993_29_3-4_a1
Walendziak, Andrzej. $(L,\varphi)$-representations of algebras. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 135-143. http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a1/

[1] Crawley, P., Dilworth, R .P.: Algebraic theory of lattices. Prentice-Hall, Englewood Cliffs (N.J.), 1973.

[2] Draskovičová, H.: Weak direct product decomposition of algebras. In: Contributions to General Algebra 5, Proc. of the Salzburg Conference (1986), Wien (1987), 105-121. | MR

[3] Hashimoto, J.: Direct, subdirect decompositions and congruence relations. Osaka Math. J. 9 (1957), 87-112. | MR | Zbl

[4] Jakubík, J.: Weak product decompositions of discrete lattices. Czech Math. J. 21(96) (1971), 399-412. | MR

[5] McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices, Varieties. Volume I, California, Monterey, 1987. | MR