$(L,\varphi)$-representations of algebras
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 135-143
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we introduce the concept of an $(L, \varphi )$-representation of an algebra $A$ which is a common generalization of subdirect, full subdirect and weak direct representation of $A$. Here we characterize such representations in terms of congruence relations.
In this paper we introduce the concept of an $(L, \varphi )$-representation of an algebra $A$ which is a common generalization of subdirect, full subdirect and weak direct representation of $A$. Here we characterize such representations in terms of congruence relations.
Classification :
08A05, 08A30, 08B26
Keywords: finitely restricted subdirect product; full subdirect product; weak direct product; congruence lattice; distributivity
Keywords: finitely restricted subdirect product; full subdirect product; weak direct product; congruence lattice; distributivity
@article{ARM_1993_29_3-4_a1,
author = {Walendziak, Andrzej},
title = {$(L,\varphi)$-representations of algebras},
journal = {Archivum mathematicum},
pages = {135--143},
year = {1993},
volume = {29},
number = {3-4},
mrnumber = {1263114},
zbl = {0796.08002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a1/}
}
Walendziak, Andrzej. $(L,\varphi)$-representations of algebras. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 135-143. http://geodesic.mathdoc.fr/item/ARM_1993_29_3-4_a1/
[1] Crawley, P., Dilworth, R .P.: Algebraic theory of lattices. Prentice-Hall, Englewood Cliffs (N.J.), 1973.
[2] Draskovičová, H.: Weak direct product decomposition of algebras. In: Contributions to General Algebra 5, Proc. of the Salzburg Conference (1986), Wien (1987), 105-121. | MR
[3] Hashimoto, J.: Direct, subdirect decompositions and congruence relations. Osaka Math. J. 9 (1957), 87-112. | MR | Zbl
[4] Jakubík, J.: Weak product decompositions of discrete lattices. Czech Math. J. 21(96) (1971), 399-412. | MR
[5] McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices, Varieties. Volume I, California, Monterey, 1987. | MR