Special tangent valued forms and the Frölicher-Nijenhuis bracket
Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 71-82
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define the tangent valued $C$-forms for a large class of differential geometric categories. We deduce that the Frölicher-Nijenhuis bracket of two tangent valued $C$-forms is a $C$-form as well. Then we discuss several concrete cases and we outline the relations to the theory of special connections.
We define the tangent valued $C$-forms for a large class of differential geometric categories. We deduce that the Frölicher-Nijenhuis bracket of two tangent valued $C$-forms is a $C$-form as well. Then we discuss several concrete cases and we outline the relations to the theory of special connections.
Classification : 53C05, 58A20
Keywords: category over manifolds; tangent valued form; Frölicher-Nijenhuis bracket; special connections
@article{ARM_1993_29_1-2_a9,
     author = {Cabras, Antonella and Kol\'a\v{r}, Ivan},
     title = {Special tangent valued forms and the {Fr\"olicher-Nijenhuis} bracket},
     journal = {Archivum mathematicum},
     pages = {71--82},
     year = {1993},
     volume = {29},
     number = {1-2},
     mrnumber = {1242630},
     zbl = {0801.53014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a9/}
}
TY  - JOUR
AU  - Cabras, Antonella
AU  - Kolář, Ivan
TI  - Special tangent valued forms and the Frölicher-Nijenhuis bracket
JO  - Archivum mathematicum
PY  - 1993
SP  - 71
EP  - 82
VL  - 29
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a9/
LA  - en
ID  - ARM_1993_29_1-2_a9
ER  - 
%0 Journal Article
%A Cabras, Antonella
%A Kolář, Ivan
%T Special tangent valued forms and the Frölicher-Nijenhuis bracket
%J Archivum mathematicum
%D 1993
%P 71-82
%V 29
%N 1-2
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a9/
%G en
%F ARM_1993_29_1-2_a9
Cabras, Antonella; Kolář, Ivan. Special tangent valued forms and the Frölicher-Nijenhuis bracket. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 71-82. http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a9/

[1] Cabras, A., Canarutto, D.: Systems of Principal Tangent-valued forms. Rendiconti di Mat., Ser VII, Roma 11 (1991), 471-493. | MR

[2] Cabras, A., Canarutto, D.: The System of Principal Connections. Rendiconti di Mat., Ser VII, Roma 11 (1991), 849-871. | MR

[3] Cabras, A., Canarutto, D., Kolář, I., Modugno, M.: Structured Bundles. Pitagora Editrice, Bologna (1991).

[4] Crampin, M., Ibort, L. A.: Graded Lie algebra of derivations and Ehresmann connections. J. Math. Pures Appl. 66 (1987), 113-125. | MR

[5] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms I. Indag. Math. 18 (1956), 338-385.

[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer - Verlag, 1993. | MR

[7] Kolář, I., Modugno, M.: On the algebraic structure of the bundles of higher velocities. Seminari Instituto di Mat. Appl. “G. Sansone”, Florence (1989), 17 pp.

[8] Kolář, I., Modugno, M.: On the algebraic structure on the jet prolongations of fibred manifolds. Czechoslovak Math. J. 40 (1990), 601-611. | MR

[9] Michor, P. W.: Remarks on the Frölicher-Nijenhuis bracket. Diff. Geom. and Its Applications, Proc. Conf. J.E. Purkyně University, Brno (1987), 197-220. | MR | Zbl

[10] Modugno, M.: Systems of vector valued forms on a fibred manifold and applications to gauge theories. Proc. Conf. Diff. Geom. Math. in Math. Phys., Salamanca 1985, Lect. Not. Math. 1251, Springer, 1987, 238-264. | MR | Zbl