Keywords: discrete logarithm; finite fields; cryptography
@article{ARM_1993_29_1-2_a4,
author = {Meletiou, Gerasimos C.},
title = {Explicit form for the discrete logarithm over the field ${\rm GF}(p,k)$},
journal = {Archivum mathematicum},
pages = {25--28},
year = {1993},
volume = {29},
number = {1-2},
mrnumber = {1242625},
zbl = {0818.11049},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a4/}
}
Meletiou, Gerasimos C. Explicit form for the discrete logarithm over the field ${\rm GF}(p,k)$. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 25-28. http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a4/
[1] Adleman, L. M.: A subexponential algorithm for the discrete logarithm problem, with applications to cryptography. Proc. 20th IEEE Found. Comp. Sci. Symp. (1979), 55-60.
[2] Diffie, W., Hellman, M. E.: New directions in cryptography. IEEE Trans. Inform. Theory, IT-22 (1976), 644-654. | MR
[3] Odlyzko, A. M.: Discrete logarithms in finite fields and their cryptographic significance. Proc. of the Eurocrypt ’84. | Zbl
[4] Pohling, S. C., Hellman, M. E.: An improved algorithm for computing logarithms over $GF(p)$ and its cryptographic significance. IEEE Trans. Inform. Theory, IT-24 (1978), 106-110. | MR
[5] Pollard, S. M.: The fast Fourier transform in a finite field. Mathematics of computation 25 (1971), 365-374. | MR | Zbl
[6] Wells, A. L.: A polynomial form for logarithms modulo a prime. IEEE Trans.Inform. Theory, IT-30 (1984), 845-846. | Zbl
[7] Knuth, D. E.: The art of computer programming. Reading MA III (1969), Addison Wesley. | MR | Zbl