Explicit form for the discrete logarithm over the field ${\rm GF}(p,k)$
Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 25-28 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For $a$ generator of the multiplicative group of the field $GF(p,k)$, the discrete logarithm of an element $b$ of the field to the base $a$, $b\ne 0$ is that integer $z:1\le z \le p^k -1$, $b=a^z$. The $p$-ary digits which represent $z$ can be described with extremely simple polynomial forms.
For $a$ generator of the multiplicative group of the field $GF(p,k)$, the discrete logarithm of an element $b$ of the field to the base $a$, $b\ne 0$ is that integer $z:1\le z \le p^k -1$, $b=a^z$. The $p$-ary digits which represent $z$ can be described with extremely simple polynomial forms.
Classification : 11T71, 11T99, 94A60
Keywords: discrete logarithm; finite fields; cryptography
@article{ARM_1993_29_1-2_a4,
     author = {Meletiou, Gerasimos C.},
     title = {Explicit form for the discrete logarithm over the field ${\rm GF}(p,k)$},
     journal = {Archivum mathematicum},
     pages = {25--28},
     year = {1993},
     volume = {29},
     number = {1-2},
     mrnumber = {1242625},
     zbl = {0818.11049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a4/}
}
TY  - JOUR
AU  - Meletiou, Gerasimos C.
TI  - Explicit form for the discrete logarithm over the field ${\rm GF}(p,k)$
JO  - Archivum mathematicum
PY  - 1993
SP  - 25
EP  - 28
VL  - 29
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a4/
LA  - en
ID  - ARM_1993_29_1-2_a4
ER  - 
%0 Journal Article
%A Meletiou, Gerasimos C.
%T Explicit form for the discrete logarithm over the field ${\rm GF}(p,k)$
%J Archivum mathematicum
%D 1993
%P 25-28
%V 29
%N 1-2
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a4/
%G en
%F ARM_1993_29_1-2_a4
Meletiou, Gerasimos C. Explicit form for the discrete logarithm over the field ${\rm GF}(p,k)$. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 25-28. http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a4/

[1] Adleman, L. M.: A subexponential algorithm for the discrete logarithm problem, with applications to cryptography. Proc. 20th IEEE Found. Comp. Sci. Symp. (1979), 55-60.

[2] Diffie, W., Hellman, M. E.: New directions in cryptography. IEEE Trans. Inform. Theory, IT-22 (1976), 644-654. | MR

[3] Odlyzko, A. M.: Discrete logarithms in finite fields and their cryptographic significance. Proc. of the Eurocrypt ’84. | Zbl

[4] Pohling, S. C., Hellman, M. E.: An improved algorithm for computing logarithms over $GF(p)$ and its cryptographic significance. IEEE Trans. Inform. Theory, IT-24 (1978), 106-110. | MR

[5] Pollard, S. M.: The fast Fourier transform in a finite field. Mathematics of computation 25 (1971), 365-374. | MR | Zbl

[6] Wells, A. L.: A polynomial form for logarithms modulo a prime. IEEE Trans.Inform. Theory, IT-30 (1984), 845-846. | Zbl

[7] Knuth, D. E.: The art of computer programming. Reading MA III (1969), Addison Wesley. | MR | Zbl