More on the girth of graphs on Weyl groups
Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 19-23 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The girth of graphs on Weyl groups, with no restriction on the associated root system, is determined. It is shown that the girth, when it is defined, is 3 except for at most four graphs for which it does not exceed 4.
The girth of graphs on Weyl groups, with no restriction on the associated root system, is determined. It is shown that the girth, when it is defined, is 3 except for at most four graphs for which it does not exceed 4.
Classification : 05C25, 05C38, 20F55
Keywords: Weyl groups; root systems; girth of a graph
@article{ARM_1993_29_1-2_a3,
     author = {Youssef, Samy A. and Hulsurkar, S. G.},
     title = {More on the girth of graphs on {Weyl} groups},
     journal = {Archivum mathematicum},
     pages = {19--23},
     year = {1993},
     volume = {29},
     number = {1-2},
     mrnumber = {1242624},
     zbl = {0798.05029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a3/}
}
TY  - JOUR
AU  - Youssef, Samy A.
AU  - Hulsurkar, S. G.
TI  - More on the girth of graphs on Weyl groups
JO  - Archivum mathematicum
PY  - 1993
SP  - 19
EP  - 23
VL  - 29
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a3/
LA  - en
ID  - ARM_1993_29_1-2_a3
ER  - 
%0 Journal Article
%A Youssef, Samy A.
%A Hulsurkar, S. G.
%T More on the girth of graphs on Weyl groups
%J Archivum mathematicum
%D 1993
%P 19-23
%V 29
%N 1-2
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a3/
%G en
%F ARM_1993_29_1-2_a3
Youssef, Samy A.; Hulsurkar, S. G. More on the girth of graphs on Weyl groups. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 19-23. http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a3/

[1] Verma, D. N.: The role of affine Weyl groups in the representation theory of algebraic groups and their Lie algebras. Lie Groups and their representations. Ed: I. M. Gelfand, John Wiley, New York, 1975.

[2] Hulsurkar, S. G.: Proof of Verma’s conjecture on Weyl’s dimension polynomial. Investiones Math. 27 (1974), 45-52. | MR | Zbl

[3] Chastkofsky, L.: Variations on Hulsurkar’s matrix with applications to representations of Algebraic Chevalley groups. J. Algebra 82 (1983), 255-274. | MR | Zbl

[4] Bourbaki, N.: Groupes et algebres de Lie, Chap. IV-VI. Hermann, Paris, 1969.

[5] Humphreys, J. E.: Introduction to Lie Algebras and representation theory. Springer Verlag, New York, 1972. | MR | Zbl

[6] Hulsurkar S. G.: Non-planarity of graphs on Weyl groups. J. Math. Phy. Sci. 24 (1990), 363-367. | MR | Zbl

[7] Youssef, S. A., Hulsurkar, S. G.: Girth of a graph on Weyl groups. to appear in “Journal of Indian Academy of Mathematics".

[8] Harary, F.: Graph theory. Addison Wesley, Mass, 1972. | MR