@article{ARM_1993_29_1-2_a3,
author = {Youssef, Samy A. and Hulsurkar, S. G.},
title = {More on the girth of graphs on {Weyl} groups},
journal = {Archivum mathematicum},
pages = {19--23},
year = {1993},
volume = {29},
number = {1-2},
mrnumber = {1242624},
zbl = {0798.05029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a3/}
}
Youssef, Samy A.; Hulsurkar, S. G. More on the girth of graphs on Weyl groups. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 19-23. http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a3/
[1] Verma, D. N.: The role of affine Weyl groups in the representation theory of algebraic groups and their Lie algebras. Lie Groups and their representations. Ed: I. M. Gelfand, John Wiley, New York, 1975.
[2] Hulsurkar, S. G.: Proof of Verma’s conjecture on Weyl’s dimension polynomial. Investiones Math. 27 (1974), 45-52. | MR | Zbl
[3] Chastkofsky, L.: Variations on Hulsurkar’s matrix with applications to representations of Algebraic Chevalley groups. J. Algebra 82 (1983), 255-274. | MR | Zbl
[4] Bourbaki, N.: Groupes et algebres de Lie, Chap. IV-VI. Hermann, Paris, 1969.
[5] Humphreys, J. E.: Introduction to Lie Algebras and representation theory. Springer Verlag, New York, 1972. | MR | Zbl
[6] Hulsurkar S. G.: Non-planarity of graphs on Weyl groups. J. Math. Phy. Sci. 24 (1990), 363-367. | MR | Zbl
[7] Youssef, S. A., Hulsurkar, S. G.: Girth of a graph on Weyl groups. to appear in “Journal of Indian Academy of Mathematics".
[8] Harary, F.: Graph theory. Addison Wesley, Mass, 1972. | MR