Further higher monotonicity properties of Sturm-Liouville functions
Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 83-96 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose that the function $q(t)$ in the differential equation (1) $y^{\prime \prime }+q(t)y=0 $ is decreasing on $(b,\infty )$ where $b \ge 0$. We give conditions on $q$ which ensure that (1) has a pair of solutions $y_1(t),\;y_2(t)$ such that the $n$-th derivative ($n\ge 1$) of the function $p(t)= y_1^2(t) +y_2^2(t)$ has the sign $(- 1)^{n+1}$ for sufficiently large $t$ and that the higher differences of a sequence related to the zeros of solutions of (1) are ultimately regular in sign.
Suppose that the function $q(t)$ in the differential equation (1) $y^{\prime \prime }+q(t)y=0 $ is decreasing on $(b,\infty )$ where $b \ge 0$. We give conditions on $q$ which ensure that (1) has a pair of solutions $y_1(t),\;y_2(t)$ such that the $n$-th derivative ($n\ge 1$) of the function $p(t)= y_1^2(t) +y_2^2(t)$ has the sign $(- 1)^{n+1}$ for sufficiently large $t$ and that the higher differences of a sequence related to the zeros of solutions of (1) are ultimately regular in sign.
Classification : 34B30, 34C10, 34D05
Keywords: n-times monotonic functions; completely monotonic functions; ultimately monotonic functions and sequences; regularly varying functions; Appell differential equation; generalized Airy equation; higher differences
@article{ARM_1993_29_1-2_a10,
     author = {Do\v{s}l\'a, Zuzana and H\'a\v{c}ik, Milo\v{s} and Muldoon, Martin E.},
     title = {Further higher monotonicity properties of {Sturm-Liouville} functions},
     journal = {Archivum mathematicum},
     pages = {83--96},
     year = {1993},
     volume = {29},
     number = {1-2},
     mrnumber = {1242631},
     zbl = {0812.34010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a10/}
}
TY  - JOUR
AU  - Došlá, Zuzana
AU  - Háčik, Miloš
AU  - Muldoon, Martin E.
TI  - Further higher monotonicity properties of Sturm-Liouville functions
JO  - Archivum mathematicum
PY  - 1993
SP  - 83
EP  - 96
VL  - 29
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a10/
LA  - en
ID  - ARM_1993_29_1-2_a10
ER  - 
%0 Journal Article
%A Došlá, Zuzana
%A Háčik, Miloš
%A Muldoon, Martin E.
%T Further higher monotonicity properties of Sturm-Liouville functions
%J Archivum mathematicum
%D 1993
%P 83-96
%V 29
%N 1-2
%U http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a10/
%G en
%F ARM_1993_29_1-2_a10
Došlá, Zuzana; Háčik, Miloš; Muldoon, Martin E. Further higher monotonicity properties of Sturm-Liouville functions. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 83-96. http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a10/

[1] Appell, P.: Sur les transformations des équations différentielles linéaires. C. R. Acad. Sci. Paris 91 (1880), 211-214.

[2] Borůvka, O.: Lineare Differentialtransformationen 2. Ordnung. VEB Verlag, Berlin, 1967, (English Translation, English Universities Press, London, 1973).

[3] Došlá, Z.: Higher monotonicity properties of special functions: application on Bessel case $|\nu | < 1/2$. Comment. Math. Univ. Carolinae 31 (1990), 233-241. | MR

[4] de Haan, L.: On regular variation and its application to the weak convergence of sample extremes. Mathematical Centre Tracts, vol. 32, Mathematisch Centrum, Amsterdam, 1975.

[5] Feller, W.: An introduction to probability theory and its applications. vol. 2, 2nd ed., Wiley, 1971. | Zbl

[6] Hartman, P.: On differential equations and the function $J_\nu ^2 + Y_\nu ^2$. Amer. J. Math. 83 (1961), 154-188. | MR

[7] Hartman, P.: On differential equations, Volterra equations and the function $J_\nu ^2 + Y_\nu ^2$. Amer. J. Math. 95 (1973), 553-593. | MR

[8] de La Vallée Poussin, Ch.-J.: Cours d’analyse infinitésimale. tome 1 , 12th ed, Louvain and Paris, 1959.

[9] Lorch, L., Szego, P.: Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109 (1963), 55-73. | MR

[10] Lorch, L., Muldoon, M. E., Szego, P.: Higher monotonicity properties of certain Sturm-Liouville functions. III. Canad. J. Math. 22 (1970), 1238-1265. | MR

[11] Muldoon, M. E.: Higher monotonicity properties of certain Sturm-Liouville functions, V. Proc. Roy. Soc. Edinburgh 77A (1977), 23-37. | MR | Zbl

[12] Seneta, E.: Regularly varying functions. Lecture Notes in Math., no. 508, Springer, 1976. | MR | Zbl

[13] Vosmanský, J.: Monotonicity properties of zeros of the differential equation $y {^{\prime \prime }} + q(x)y = 0$. Arch. Math. (Brno) 6 (1970), 37-74. | MR

[14] Williamson, R. E.: Multiply monotone functions and their Laplace transforms. Duke Math. J. 23 (1956), 189-207. | MR | Zbl