Keywords: n-times monotonic functions; completely monotonic functions; ultimately monotonic functions and sequences; regularly varying functions; Appell differential equation; generalized Airy equation; higher differences
@article{ARM_1993_29_1-2_a10,
author = {Do\v{s}l\'a, Zuzana and H\'a\v{c}ik, Milo\v{s} and Muldoon, Martin E.},
title = {Further higher monotonicity properties of {Sturm-Liouville} functions},
journal = {Archivum mathematicum},
pages = {83--96},
year = {1993},
volume = {29},
number = {1-2},
mrnumber = {1242631},
zbl = {0812.34010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a10/}
}
TY - JOUR AU - Došlá, Zuzana AU - Háčik, Miloš AU - Muldoon, Martin E. TI - Further higher monotonicity properties of Sturm-Liouville functions JO - Archivum mathematicum PY - 1993 SP - 83 EP - 96 VL - 29 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a10/ LA - en ID - ARM_1993_29_1-2_a10 ER -
Došlá, Zuzana; Háčik, Miloš; Muldoon, Martin E. Further higher monotonicity properties of Sturm-Liouville functions. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 83-96. http://geodesic.mathdoc.fr/item/ARM_1993_29_1-2_a10/
[1] Appell, P.: Sur les transformations des équations différentielles linéaires. C. R. Acad. Sci. Paris 91 (1880), 211-214.
[2] Borůvka, O.: Lineare Differentialtransformationen 2. Ordnung. VEB Verlag, Berlin, 1967, (English Translation, English Universities Press, London, 1973).
[3] Došlá, Z.: Higher monotonicity properties of special functions: application on Bessel case $|\nu | < 1/2$. Comment. Math. Univ. Carolinae 31 (1990), 233-241. | MR
[4] de Haan, L.: On regular variation and its application to the weak convergence of sample extremes. Mathematical Centre Tracts, vol. 32, Mathematisch Centrum, Amsterdam, 1975.
[5] Feller, W.: An introduction to probability theory and its applications. vol. 2, 2nd ed., Wiley, 1971. | Zbl
[6] Hartman, P.: On differential equations and the function $J_\nu ^2 + Y_\nu ^2$. Amer. J. Math. 83 (1961), 154-188. | MR
[7] Hartman, P.: On differential equations, Volterra equations and the function $J_\nu ^2 + Y_\nu ^2$. Amer. J. Math. 95 (1973), 553-593. | MR
[8] de La Vallée Poussin, Ch.-J.: Cours d’analyse infinitésimale. tome 1 , 12th ed, Louvain and Paris, 1959.
[9] Lorch, L., Szego, P.: Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109 (1963), 55-73. | MR
[10] Lorch, L., Muldoon, M. E., Szego, P.: Higher monotonicity properties of certain Sturm-Liouville functions. III. Canad. J. Math. 22 (1970), 1238-1265. | MR
[11] Muldoon, M. E.: Higher monotonicity properties of certain Sturm-Liouville functions, V. Proc. Roy. Soc. Edinburgh 77A (1977), 23-37. | MR | Zbl
[12] Seneta, E.: Regularly varying functions. Lecture Notes in Math., no. 508, Springer, 1976. | MR | Zbl
[13] Vosmanský, J.: Monotonicity properties of zeros of the differential equation $y {^{\prime \prime }} + q(x)y = 0$. Arch. Math. (Brno) 6 (1970), 37-74. | MR
[14] Williamson, R. E.: Multiply monotone functions and their Laplace transforms. Duke Math. J. 23 (1956), 189-207. | MR | Zbl