Keywords: hyperbolic inclusion; measure of noncompactness; measurable multifunction; upper and lower semicontinuous multifunctions; fixed point
@article{ARM_1992_28_3-4_a8,
author = {Papageorgiou, Nikolaos S.},
title = {Existence of solutions for hyperbolic differential inclusions in {Banach} spaces},
journal = {Archivum mathematicum},
pages = {205--213},
year = {1992},
volume = {28},
number = {3-4},
mrnumber = {1222288},
zbl = {0781.34045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a8/}
}
Papageorgiou, Nikolaos S. Existence of solutions for hyperbolic differential inclusions in Banach spaces. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 205-213. http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a8/
[1] Banas, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Marcel-Dekker, New York, 1980. | MR
[2] Beckenback, E., Bellman, R.: Inequalities. Springer, Berlin, 1961. | MR
[3] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69-86. | MR
[4] De Blasi, F., Myjak, J.: On the Structure of the set of solutions of the Darboux problem for hyperbolic equations. Proc. Edinburgh Math. Soc. 29 (1986), 7-14. | MR
[5] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York, 1965. | MR
[6] Kandilakis, D., Papageorgiou, N.S.: On the properties of the Aumann integral with applications to differential inclusions and optimal control. Czechoslovak Math. Jour. 39 (1989), 1-15. | MR
[7] Kandilakis, D., Papageorgiou, N.S.: Properties of measurable multifunctions with stochastic domain and their applications. Math. Japonica 35 (1990), 629-643. | MR
[8] Klein, E., Thompson, A.: Theory of Correspondences. Wiley, New York, 1984. | MR
[9] Kubiaczyk, I.: Kneser’s theorem for hyperbolic equations. Functiones et Approximatio 14 (1984), 183-196. | MR
[10] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlin. Anal-TMA 4 (1980), 985-999. | MR
[11] Papageorgiou, N.S.: On the theory of Banach space valued integrable multifunctions Part 1: Integration and conditional expectation. J. Multiv. Anal. 17 (1985), 185-206. | MR
[12] Papageorgiou, N.S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. Sci. 10 (1987), 433-442. | MR | Zbl
[13] Tarafdar, E., Vyborny, R.: Fixed point theorems for condensing multivalued mappings on a locally convex topological space. Bull. Austr. Math. Soc. 12 (1975), 161-170. | MR
[14] Wagner, D.: Survey of measurable selection theorems. SIAM J. Control and Optim. 15 (1977), 859-903. | MR | Zbl
[15] Wilansky, A.: Modern Methods in Topological Vector Spaces. McGraw-Hill, New York, 1978. | MR | Zbl