On a new family of homogeneous Einstein manifolds
Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 199-204
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that there exists exactly one homothety class of invariant Einstein metrics on each space $[SU(2)]^{S+1}/T^S$ defined below.
We show that there exists exactly one homothety class of invariant Einstein metrics on each space $[SU(2)]^{S+1}/T^S$ defined below.
Classification :
53C25, 53C30
Keywords: Einstein manifolds; homogeneous Riemannian manifolds; Ricci curvature; curvature tensor
Keywords: Einstein manifolds; homogeneous Riemannian manifolds; Ricci curvature; curvature tensor
@article{ARM_1992_28_3-4_a7,
author = {Rodionov, E. D.},
title = {On a new family of homogeneous {Einstein} manifolds},
journal = {Archivum mathematicum},
pages = {199--204},
year = {1992},
volume = {28},
number = {3-4},
mrnumber = {1222287},
zbl = {0787.53037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a7/}
}
Rodionov, E. D. On a new family of homogeneous Einstein manifolds. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 199-204. http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a7/
[B] Besse, A.: Einstein manifolds. Springer Verlag, Berlin, 1987. | MR | Zbl
[J – K] Jimenez, J.A., Kowalski, O.: The classification of $\varphi $-symmetric Sasakian manifolds. 1991, preprint. | MR
[K – W] Kowalski, O., Wegrzynowski, S.: A classification of five-dimensional $\varphi $-symmetric spaces. Tensor, N.S. 46 (1987), 379-386.
[R] Rodionov, E.D.: Einstein metrics an a class of five-dimensional homogenous spaces. 1991, to appear in CMUC, Prague. | MR
[T] Takahashi, T.: Sasakian $\varphi $-symmetric spaces. Tohoku Math. J. 29 (1977), 91-113. | MR | Zbl